Abstract:
Technology for communicating security key information from a macro eNB is disclosed. Security key information associated with the macro evolved node B (eNB) may be determined. The security key information may be used to cipher information communicated at the first eNB. A small eNB may be identified at the macro eNB to generate the security key information associated with the macro eNB for ciphering information communicated at the second eNB. The security key information may be communicated, from the macro eNB, to the small eNB for inter-Evolved Universal Terrestrial Radio Access (EUTRA) evolved node B (eNB) carrier aggregation.
Abstract:
Briefly, in accordance with one or more embodiments, an apparatus may be configured to receive a first scheduling request transmission for a first cell group, and a second scheduling request transmission for a second cell group, determine one of the first scheduling request and the second scheduling request to have a higher priority and another one of the first scheduling request and the second scheduling request to have a lower priority, and process the scheduling request having a higher priority without processing the scheduling request having a lower priority. An apparatus may be configured to combine a configuration of a first scheduling request for a first cell group and a second configuration of a second scheduling request for a secondary cell group in a system radio bearer, and transmit the SRB to a user equipment to process the first scheduling request and the second scheduling request.
Abstract:
Systems, apparatus, user equipment (UE), evolved node B (eNB), and methods are described for generating an extended power headroom report (ePHR) based on an uncertainty associated with a physical downlink control channel communication granting an uplink grant for a physical uplink shared channel communication when the system is configured for simultaneous physical uplink shared channel and physical uplink control channel communications. Some embodiments are structured to generate the ePHR using a type 2 report regardless of the uncertainty associated with the ePHR, while other embodiments generate the ePHR using a reference format. In some embodiments, a UE communicates a timing field with a UE capability communication indicating whether the UE meets timing requirements to avoid uncertainty in ePHR communications.
Abstract:
A user equipment (UE) includes a transmission mode component, a selection component, and a transmission component. The transmission mode component is configured to selectively allocate resources for device-to-device communication according to a plurality of transmission modes. The plurality of transmission modes include a first transmission mode in which the resources used by the UE are specifically allocated by one of a base station or relay node and a second transmission mode in which the UE selects the resources from a pool of available resources. The selection component is configured to select a selected transmission mode. The transmission component is configured to transmit signals in frequency resources selected according to the selected transmission mode.
Abstract:
Embodiments of the present disclosure describe methods, systems, and devices for facilitating transfer of user equipment (UE) handover in multi-cell networks. A source evolved node B (eNB) may transmit an autonomous handover grant to a UE along with an indication of a target eNB. The source eNB may also make a handover request to the target eNB and provide a UE context to the target eNB. Upon transmission of a handover command, the UE may perform a random access channel procedure to connect to the target eNB. Because the eNB may have the UE context (or may be able to fetch the context), the handover time may be lessened. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of a User Equipment (UE) to support dual-connectivity with a Master Evolved Node-B (MeNB) and a Secondary eNB (SeNB) are disclosed herein. The UE may receive downlink traffic packets from the MeNB and from the SeNB as part of a split data radio bearer (DRB). At least a portion of control functionality for the split DRB may be performed at each of the MeNB and the SeNB. The UE may receive an uplink eNB indicator for an uplink eNB to which the UE is to transmit up-link traffic packets as part of the split DRB. Based at least partly on the uplink eNB indicator, the UE may transmit uplink traffic packets to the uplink eNB as part of the split DRB. The uplink eNB may be selected from a group that includes the MeNB and the SeNB.
Abstract:
Technology for communicating security key information from a macro eNB is disclosed. Security key information associated with the macro evolved node B (eNB) may be determined. The security key information may be used to cipher information communicated at the first eNB. A small eNB may be identified at the macro eNB to generate the security key information associated with the macro eNB for ciphering information communicated at the second eNB. The security key information may be communicated, from the macro eNB, to the small eNB for inter-Evolved Universal Terrestrial Radio Access (EUTRA) evolved node B (eNB) carrier aggregation.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for alignment procedures in dual-connectivity networks. Various embodiments may include determining system frame number and subframe number differences, and aligning discontinuous reception (DRX) or measurement gaps of a secondary cell group with a master cell group. Other embodiments may be described or claimed.