摘要:
A nitride-based laser diode structure utilizing a metal-oxide (e.g., Indium-Tin-Oxide (ITO) or Zinc-Oxide (ZnO)) in place of p-doped AlGaN to form the upper cladding layer. An InGaN laser diode structure utilizes ITO upper cladding structure, with an SiO2 isolation structure formed on opposite sides of the ITO upper cladding structure to provide a lateral index step that is large enough to enable lateral single-mode operation. The lateral index step is further increased by slightly etching the GaN:Mg waveguide layer below the SiO2 isolation structure. An optional p-type current barrier layer (e.g., AlGaN:Mg having a thickness of approximately 20 nm) is formed between the InGaN-MQW region and a p-GaN upper waveguide layer to impede electron leakage from the InGaN-MQW region.
摘要:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
摘要:
A stress-balancing layer formed over portions of a spring metal finger that remain attached to an underlying substrate to counter internal stresses inherently formed in the spring metal finger. The (e.g., positive) internal stress of the spring metal causes the claw (tip) of the spring metal finger to bend away from the substrate when an underlying release material is removed. The stress-balancing pad is formed on an anchor portion of the spring metal finger, and includes an opposite (e.g., negative) internal stress that counters the positive stress of the spring metal finger. A stress-balancing layer is either initially formed over the entire spring metal finger and then partially removed (etched) from the claw portion, or selectively deposited only on the anchor portion of the spring metal finger. An interposing etch stop layer is used when the same material composition is used to form both the spring metal and stress-balancing layers.
摘要:
An improved nanotip structure and method for forming the nanotip structure and a display system using the improved nanotip structure is described. The described nanotip is formed from a semiconductor having a crystalline structure such as gallium nitride. The crystalline structure preferably forms dislocations oriented in the direction of the nanotips. One method of forming the nanotip structure uses the relatively slow etching rates that occur around the dislocations compared to the faster etch rates that occur in other parts of the semiconductor structure. The slower etching around dislocations enables the formation of relatively high aspect ratio nanotips in the dislocation area.
摘要:
A method for placing nitride laser diode arrays on a thermally conducting substrate is described. The method uses an excimer laser to detach the nitride laser diode from the sapphire growth substrate after a thermally conducting substrate has been bonded to the side opposite the sapphire substrate.
摘要:
A structure and method for an asymmetric waveguide nitride laser diode without need of a p-type waveguide is disclosed. The need for a high aluminum tunnel barrier layer in the laser is avoided.
摘要:
Methods for cleaving semiconductor structures formed on c-face sapphire substrates are disclosed. An exemplary method includes forming at least one III-V nitride layer on the top c-face of a c-face sapphire substrate. A line of weakness is formed on the bottom c-face of the c-face sapphire substrate in the a-plane direction of the c-face sapphire substrate. A force is applied to the bottom c-face to cleave the c-face sapphire substrate along the line of weakness in the a-plane direction, and to form a cleaved facet along an m-plane of each III-V nitride layer. The III-V nitride layers can be included in laser diodes and other light-emitting devices.
摘要:
A technique based on etching a release layer, for separating the nearly lattice matched substrate from a base substrate is disclosed. A nearly lattice matched substrate for the epitaxial growth of Group-III nitride semiconductor devices and method of fabricating the nearly lattice matched substrate and devices is disclosed. Enhanced ELOG methods are used to create low defect density GaN films. The GaN films are used to grow Group-III nitride LEDs and laser diodes.
摘要:
Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.