Laser diode with metal-oxide upper cladding layer
    81.
    发明授权
    Laser diode with metal-oxide upper cladding layer 有权
    具有金属氧化物上覆层的激光二极管

    公开(公告)号:US06990132B2

    公开(公告)日:2006-01-24

    申请号:US10394560

    申请日:2003-03-20

    IPC分类号: H01S5/00

    摘要: A nitride-based laser diode structure utilizing a metal-oxide (e.g., Indium-Tin-Oxide (ITO) or Zinc-Oxide (ZnO)) in place of p-doped AlGaN to form the upper cladding layer. An InGaN laser diode structure utilizes ITO upper cladding structure, with an SiO2 isolation structure formed on opposite sides of the ITO upper cladding structure to provide a lateral index step that is large enough to enable lateral single-mode operation. The lateral index step is further increased by slightly etching the GaN:Mg waveguide layer below the SiO2 isolation structure. An optional p-type current barrier layer (e.g., AlGaN:Mg having a thickness of approximately 20 nm) is formed between the InGaN-MQW region and a p-GaN upper waveguide layer to impede electron leakage from the InGaN-MQW region.

    摘要翻译: 使用金属氧化物(例如,铟锡氧化物(ITO)或氧化锌(ZnO))代替掺杂p型AlGaN的氮化物基激光二极管结构以形成上覆层。 InGaN激光二极管结构利用ITO上部包层结构,在ITO上部包层结构的相对侧上形成SiO 2隔离结构,以提供足够大的横向折射率步骤,以实现侧向单模 操作。 通过稍微蚀刻在SiO 2隔离结构之下的GaN:Mg波导层,进一步增加横向折射率梯度。 在InGaN-MQW区和p-GaN上波导层之间形成可选的p型电流阻挡层(例如,厚度约为20nm的AlGaN:Mg),以阻止来自InGaN-MQW区的电子泄漏。

    Spring structure with stress-balancing layer
    83.
    发明授权
    Spring structure with stress-balancing layer 有权
    弹簧结构应力平衡层

    公开(公告)号:US06794737B2

    公开(公告)日:2004-09-21

    申请号:US09976394

    申请日:2001-10-12

    IPC分类号: H01L2150

    摘要: A stress-balancing layer formed over portions of a spring metal finger that remain attached to an underlying substrate to counter internal stresses inherently formed in the spring metal finger. The (e.g., positive) internal stress of the spring metal causes the claw (tip) of the spring metal finger to bend away from the substrate when an underlying release material is removed. The stress-balancing pad is formed on an anchor portion of the spring metal finger, and includes an opposite (e.g., negative) internal stress that counters the positive stress of the spring metal finger. A stress-balancing layer is either initially formed over the entire spring metal finger and then partially removed (etched) from the claw portion, or selectively deposited only on the anchor portion of the spring metal finger. An interposing etch stop layer is used when the same material composition is used to form both the spring metal and stress-balancing layers.

    摘要翻译: 应力平衡层形成在弹簧金属指的部分上,其保持附接到下面的基底以抵抗固有地形成在弹簧金属指中的内部应力。 弹簧金属的(例如正)内部应力导致弹簧金属指的爪(尖端)在移除下面的剥离材料时远离基底弯曲。 应力平衡垫形成在弹簧金属指的锚固部分上,并且包括抵抗弹簧金属指的正应力的相反(例如负的)内部应力。 最初在整个弹簧金属指上形成应力平衡层,然后部分地从爪部移除(蚀刻),或者仅选择性地沉积在弹簧金属指的锚定部分上。 当使用相同的材​​料组成来形成弹簧金属和应力平衡层时,使用插入式蚀刻停止层。

    Field emission display device
    84.
    发明授权
    Field emission display device 失效
    场致发射显示装置

    公开(公告)号:US06781159B2

    公开(公告)日:2004-08-24

    申请号:US09998334

    申请日:2001-12-03

    IPC分类号: H01L3300

    CPC分类号: H01J1/3044 H01J9/025

    摘要: An improved nanotip structure and method for forming the nanotip structure and a display system using the improved nanotip structure is described. The described nanotip is formed from a semiconductor having a crystalline structure such as gallium nitride. The crystalline structure preferably forms dislocations oriented in the direction of the nanotips. One method of forming the nanotip structure uses the relatively slow etching rates that occur around the dislocations compared to the faster etch rates that occur in other parts of the semiconductor structure. The slower etching around dislocations enables the formation of relatively high aspect ratio nanotips in the dislocation area.

    摘要翻译: 描述了用于形成纳米尖端结构的改进的纳米尖端结构和方法以及使用改进的纳米尖端结构的显示系统。 所描述的纳米尖端由具有诸如氮化镓的晶体结构的半导体形成。 晶体结构优选地形成在纳米尖端方向上取向的位错。 与在半导体结构的其它部分中发生的更快的蚀刻速率相比,形成纳米尖端结构的一种方法使用在位错周围发生的相对慢的蚀刻速率。 在位错周围较慢的蚀刻使得能够在位错区域中形成相对高的纵横比的纳米尖端。

    Methods for cleaving facets in III-V nitrides grown on c-face sapphire substrates
    87.
    发明授权
    Methods for cleaving facets in III-V nitrides grown on c-face sapphire substrates 失效
    在c面蓝宝石衬底上生长的III-V氮化物中切割面的方法

    公开(公告)号:US06379985B1

    公开(公告)日:2002-04-30

    申请号:US09682181

    申请日:2001-08-01

    IPC分类号: H01L21301

    摘要: Methods for cleaving semiconductor structures formed on c-face sapphire substrates are disclosed. An exemplary method includes forming at least one III-V nitride layer on the top c-face of a c-face sapphire substrate. A line of weakness is formed on the bottom c-face of the c-face sapphire substrate in the a-plane direction of the c-face sapphire substrate. A force is applied to the bottom c-face to cleave the c-face sapphire substrate along the line of weakness in the a-plane direction, and to form a cleaved facet along an m-plane of each III-V nitride layer. The III-V nitride layers can be included in laser diodes and other light-emitting devices.

    摘要翻译: 公开了在c面蓝宝石衬底上形成半导体结构的方法。 示例性方法包括在c面蓝宝石衬底的顶部c面上形成至少一个III-V族氮化物层。 在c面蓝宝石衬底的a面方向的c面蓝宝石衬底的底部c面上形成弱线。 将力施加到底部c面以沿a平面方向沿着弱线切割c面蓝宝石衬底,并且沿着每个III-V族氮化物层的m面形成切割面。 III-V族氮化物层可以包括在激光二极管和其他发光器件中。

    Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
    89.
    发明授权
    Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission 有权
    Algainn pendeoeitaxy led和激光二极管结构,用于纯蓝色或绿色发射

    公开(公告)号:US06285696B1

    公开(公告)日:2001-09-04

    申请号:US09363314

    申请日:1999-07-28

    IPC分类号: H01S319

    CPC分类号: H01L33/32 H01L33/007

    摘要: Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.

    摘要翻译: III-V族氮化物半导体用作光电子发光体。 半导体合金InGaN用作氮化物激光二极管和LED中的有源区,因为其带隙能量可以通过调整合金组成来调整,以跨越整个可见光谱。 然而,蓝色或绿色发射所需的高铟含量的InGaN层难以生长,但是由于GaN和InGaN之间的不良晶格失配导致合金偏析。 在这种情况下,不均匀的合金组成导致光谱不纯的发射,并减少了光学增益。 为了抑制偏析,可以在厚的InGaN层上沉积高铟含量的InGaN有源区,代替更典型的GaN。 首先沉积厚的InGaN层形成比GaN更大的晶格参数。 因此,与GaN相比,在厚的InGaN层上生长的高铟含量的异质结构有源区域的晶格失配明显减少。 因此,由于合金分离而不太可能遭受结构劣化。 因此,厚的GaN结构能够增加具有改进的结构和光电性质的高铟含量活性区域,导致具有光谱纯发射的LED和较低阈值的激光二极管。