摘要:
Voltage programmable anti-fuse structures and methods are provided that include at least one conductive material island atop a dielectric surface that is located between two adjacent conductive features. In one embodiment, the anti-fuse structure includes a dielectric material having at least two adjacent conductive features embedded therein. At least one conductive material island is located on an upper surface of the dielectric material that is located between the at least two adjacent conductive features. A dielectric capping layer is located on exposed surfaces of the dielectric material, the at least one conductive material island and the at least two adjacent conductive features. When the anti-fuse structure is in a programmed state, a dielectric breakdown path is present in the dielectric material that is located beneath the at least one conductive material island which conducts electrical current to electrically couple the two adjacent conductive features.
摘要:
A method includes forming one or more trenches in a substrate; lining the one or more trenches with a dielectric liner; filling the one or more trenches with a conductive electrode to form one or more trench electrodes; forming a transistor layer on the substrate; connecting each of the one or more trench electrodes to at least one access transistor in the transistor layer; and thinning the substrate to expose at least a portion of each of the trench electrodes.
摘要:
A FinFET with improved gate planarity and method of fabrication is disclosed. The gate is disposed on a pattern of fins prior to removing any unwanted fins. Lithographic techniques or etching techniques or a combination of both may be used to remove the unwanted fins. All or some of the remaining fins may be merged.
摘要:
A method of fabricating a semiconductor device that includes at least two fin structures, wherein one of the at least two fin structures include epitaxially formed in-situ doped second source and drain regions having a facetted exterior sidewall that are present on the sidewalls of the fin structure. In another embodiment, the disclosure also provides a method of fabricating a finFET that includes forming a recess in a sidewall of a fin structure, and epitaxially forming an extension dopant region in the recess that is formed in the fin structure. Structures formed by the aforementioned methods are also described.
摘要:
Transistor devices including stressors are disclosed. One such transistor device includes a channel region, a dielectric layer and a semiconductor substrate. The channel region is configured to provide a conductive channel between a source region and a drain region. In addition, the dielectric layer is below the channel region and is configured to electrically insulate the channel region. Further, the semiconductor substrate, which is below the channel region and below the dielectric layer, includes dislocation defects at a top surface of the semiconductor substrate, where the dislocation defects are collectively oriented to impose a compressive strain on the channel region such that charge carrier mobility is enhanced in the channel region.
摘要:
A method for fabricating a field effect transistor device includes forming a gate stack on a substrate, forming a spacer on the substrate, adjacent to the gate stack, forming a first portion of an active region on the substrate, the first portion of the active region having a first facet surface adjacent to the gate stack, forming a second portion of the active region on a portion of the first portion of the active region, the second portion of the active region having a second facet surface adjacent to the gate stack, the first facet surface and the second facet surface partially defining a cavity adjacent to the gate stack.
摘要:
A method of forming a semiconductor device includes patterning a photoresist layer formed over a homogeneous semiconductor device layer to be etched; subjecting the semiconductor device to an implant process that selectively implants a sacrificial etch stop layer that is self-aligned in accordance with locations of features to be etched within the homogeneous semiconductor device layer, and at a desired depth for the features to be etched; etching a feature pattern defined by the patterned photoresist layer into the homogenous semiconductor device layer, stopping on the implanted sacrificial etch stop layer; and removing remaining portion of the implanted sacrificial etch stop layer prior to filling the etched feature pattern with a fill material.
摘要:
A method for fabrication of features of an integrated circuit and device thereof include patterning a first structure on a surface of a semiconductor device and forming spacers about a periphery of the first structure. An angled ion implantation is applied to the device such that the spacers have protected portions and unprotected portions from the angled ion implantation wherein the unprotected portions have an etch rate greater than an etch rate of the protected portions. The unprotected portions and the first structure are selectively removed with respect to the protected portions. A layer below the protected portions of the spacer is patterned to form integrated circuit features.
摘要:
A transistor is provided that includes a buried oxide layer above a substrate. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer, the gate stack including a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. A nitride liner is adjacent to the gate stack. An oxide liner is adjacent to the nitride liner. A set of faceted raised source/drain regions having a part including a portion of the silicon layer. The set of faceted raised source/drain regions also include a first faceted side portion and a second faceted side portion.
摘要:
In one exemplary embodiment of the invention, a method (e.g., to fabricate a semiconductor device having a borderless contact) including: forming a first gate structure on a substrate; depositing an interlevel dielectric over the first gate structure; planarizing the interlevel dielectric to expose a top surface of the first gate structure; removing at least a portion of the first gate structure; forming a second gate structure in place of the first gate structure; forming a contact area for the borderless contact by removing a portion of the interlevel dielectric; and forming the borderless contact by filling the contact area with a metal-containing material.