Abstract:
A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer. The etching process for producing the access opening includes at least one anisotropic etching step and at least one isotropic etching step, in the anisotropic etching step, an etching channel from the back side of the substrate being produced, which terminates beneath the first diaphragm layer in the vicinity of the cavity, and at least the end region of this etching channel being expanded in the isotropic etching step until the etching channel is connected to the cavity.
Abstract:
A method of generating three-dimensional nanostructures that includes providing a silicon substrate, creating a porous silicon template from the silicon substrate, wherein the template is created to have a predetermined configuration, depositing a predetermined material on the porous silicon template, and removing the porous silicon template from the deposited material to leave a freestanding nanostructure.
Abstract:
A structural element having a region of porous silicon or porous silicon oxide, which was obtained from a porization, starting from an edge area of the region, in at least largely crystalline silicon. Relative to the edge area, the crystalline silicon has a crystal orientation that has an orientation that differs from a orientation or from an orientation that is equivalent for reasons of symmetry. This structural element is suited for use in a mass-flow sensor, in a component for the thermal decoupling of sensor and/or actuator structures, or a gas sensor. Furthermore, methods for setting the thermal conductivity of a region of porous silicon or porous silicon oxide of a structural element are described. In particular, in a porization of crystalline silicon, starting from an edge area of the region, the crystalline orientation of the silicon relative to the edge area is selected such that a thermal conductivity comes about along a direction perpendicular to the edge area that differs from, in particular is lower than, the thermal conductivity, that comes about in this direction in an otherwise analogous porization of crystalline silicon having a orientation or an equivalent orientation relative to this edge area.
Abstract:
Exemplary embodiments relate to an energy converting apparatus and a method for converting energy, which may convert energy of an applied signal into electrical energy. The energy converting apparatus may include at least one nanowire which resonates in response to the applied signal. The resonating nanowire may contact an electrode allowing a current to flow through the electrode and the nanowire by a Schottky contact between the electrode and the nanowire. The method for converting energy may include applying a signal to at least one nanowire to resonate the nanowire, and generating electrical energy through the contact between the resonating nanowire and an electrode.
Abstract:
A method of packaging a micro electromechanical structure is disclosed. The method comprises the steps of forming the structure on a substrate, depositing a sacrificial layer over the structure, patterning the sacrificial layer, depositing a porous layer over the patterned sacrificial layer, removing the patterned sacrificial layer through the porous layer, treating the porous layer with a plasma and depositing a capping layer over the plasma-treated porous layer. The plasma treatment step ensures that the capping layer material cannot enter the cavity formed by the removal of the sacrificial layer through the porous layer. A device formed by this method is also disclosed.
Abstract:
A method for producing a micromechanical diaphragm sensor includes providing a semiconductor substrate having a first region, a diaphragm, and a cavity that is located at least partially below the diaphragm. Above at least one part of the first region, a second region is generated in or on the surface of the semiconductor substrate, with at least one part of the second region being provided as crosspieces. The diaphragm is formed by a deposited sealing layer, and includes at least a part of the crosspieces.
Abstract:
A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.
Abstract:
A method for preparing porous silicon in which an oxidized single crystal silicon wafer is first bonded to a polycrystalline wafer. The oxidized high quality wafer is then thinned to the desired thickness by grinding and polishing. An oxide may then be deposited on the wafer and patterned to expose regions were the porous silicon will be formed. The single crystal silicon wafer may then etched in the unmasked areas of the pattern to thin the single crystal silicon wafer to the desired thickness in the range of 0.1 microns to 1.0 microns. Next, the porous silicon may be formed using standard techniques. Once the porous silicon is formed the polycrystalline silicon wafer may be ground away and the oxide layer may be undercut to expose the porous silicon. Finally, an appropriate liner material may be applied to the porous silicon.
Abstract:
In a method for manufacturing a micromechanical semiconductor component, e.g., a pressure sensor, a locally limited, buried, and at least partially oxidized porous layer is produced in a semiconductor substrate. A cavity is subsequently produced in the semiconductor substrate from the back, directly underneath the porous first layer, using a trench etch process. The porous first layer is used as a stop layer for the trench. Thin diaphragms having a low thickness tolerance may thus be produced for differential pressure measurement.
Abstract:
A microelectromechanical device (MEMS) utilizing a porous electrode surface for reducing stiction is disclosed. In one embodiment, a microelectromechanical device is an interferometric modulator that includes a transparent electrode having a first surface; and a movable reflective electrode with a second surface facing the first surface. The movable reflective electrode is movable between a relaxed and actuated (collapsed) position. An aluminum layer is provided on either the first or second surface. The aluminum layer is then anodized to provide an aluminum oxide layer which has a porous surface. The porous surface, in the actuated position, decreases contact area between the electrodes, thus reducing stiction.