Abstract:
The invention provides an intake manifold in which the number of parts or the number of processes of assembling can be reduced, and which is easy to assemble and assuring largely freedom in designing location of an intake control valve. An intake manifold 1 includes a hollow shell 2 and an intake control valve 3 functioning to control a combustion air-intake of an internal combustion engine. The shell 2 is formed by joining integrally a pair of half bodies 2a, 2b having a configuration of the shell 2 being halved in tube axial direction. The intake control valve 3 is built in forming an integral part at the time of joining the half bodies 2a, 2b together.
Abstract:
An air inlet module incorporating, in one structural unit, on the one hand, a supply manifold, on the other hand, an exhaust gas reinjection circuit and, finally, a gas/liquid heat exchanger designed to cool the exhaust gases, the module consisting of a sealed assembly of at most four parts, namely, a first part comprising the inlet manifold, the outlet manifolds, a portion of the supply conduit, and a hollow body forming the tank of the exchanger, a second part comprising the many circulation manifolds and a support body for assembling said manifolds in the tank, and a third part of which one portion forms a cover for the hollow open container and comprising several conduit portions forming at least partially the exhaust gas circulation circuit and conveying these gases to the inlet manifold, also incorporated in said third part.
Abstract:
An intake module for a vehicular engine has a casing that is constructed of an air cleaner housing portion and an electronic control unit (ECU) housing portion. The air cleaner housing portion that houses an air cleaner is mounted on the engine. The ECU housing portion that houses an ECU is connected with the air cleaner housing portion. A plurality of reinforcement ribs is formed on an outer periphery of the ECU housing portion.
Abstract:
A fuel injector adapter for providing nitrous oxide to an internal combustion engine is disclosed. The nozzle has a central fuel injector passage that terminates at a first outlet end. Fuel from a fuel injector may be passed through the central fuel injector passage. The nozzle also has an inner annular passage arranged circumferentially around the central fuel injector passage. The inner annular passage terminates at a second outlet end. The nozzle also has an outer annular passage arranged circumferentially around the inner annular passage that terminates at a third outlet end. One or both of the inner and outer annular passages is adapted to pass nitrous oxide through it. The nozzle is adapted to fit between a fuel injector and an engine without substantial modification to the engine.
Abstract:
A fluid guideline with at least two structural elements made of substantially soundproof material has at least one opening for sound damping. An impedance change (in particular in the form of an impedance discontinuity) of the flow resistance of the fluid flowing through the fluid guideline is present between two adjacent structural elements, and the at least one opening is arranged in the region of the impedance change between two adjacent structural elements.
Abstract:
A suction system for an internal-combustion engine is provided with at least one container, which can be connected by way of feed pipes with the intake ports of a cylinder head. Openings of the intake ports for charge cycle control are monitored by valves. In the container or in the feed pipes, at least one reflection chamber is provided, which is connected with the interior volume of the container by way of a hole structure. The hole structure is formed by a plurality of openings that are formed in a wall section of the container, and are closed off by a cover fastened to the exterior side of the container wall, providing a reflection chamber which reduces noise in the suction system without adversely affecting air flow in the interior of the suction system.
Abstract:
A resin intake manifold is provided with two separated bodies manufactured by connecting protrusions of weld portions of the separated bodies to each other in accordance with a vibration welding, and a cover wall in which one of the weld portions is arranged in an inner side or an outer side of the protrusion with leaving space with the protrusion. The protrusions of the weld portions are respectively provided with parallel protrusion portions extending in parallel to a vibrating direction of the vibration welding, and a cover wall arranged at a position in an orthogonal direction to the vibrating direction in the parallel protrusion portions is provided with an extension portion extending to the separated body in the other side welded to the separated body provided with the cover wall, in such a manner as to prevent a burr generated at a time of welding the parallel protrusion portion from getting over the cover wall arranged at the position in the orthogonal to the vibrating direction in the parallel protrusion portion. A recess groove receiving the extension portion is arranged in a side of the other side separated body.
Abstract:
A valve body of an intake controlling valve, which is selectively opened and closed to communicate and interrupt communications between chambers which are divided by a partition wall in a resin surge tank, may be used for internal combustion engines. A variable intake device for an internal combustion engine is manufactured such that the valve unit is integrally assembled to a resin surge tank body by installing the valve unit into an opening of an outer wall of the resin surge tank and an opening of the partition wall formed at the partition wall and fixing the valve unit. Between the frame and the opening of the partition wall, and the valve unit and the opening of the outer wall are integrally fixed at their contact portions through adhesion with an adhesive or by welding.
Abstract:
An intake device for supplying combustion air to an internal combustion engine composed of two sealingly connected half shells (10, 11) which form an intake air plenum (13), intake ducts (14), and a cylinder head flange (15) in which there is an insert (20) associated with each intake duct (14). Each insert is provided with a partition (23) for dividing the flow into two flow cross-sections (21, 22). The first flow cross section (21) is provided with a valve flap (24), which can be opened and closed to influence the filling of combustion chambers of the internal combustion engine.
Abstract:
In an intake manifold of an internal combustion chamber comprising a surge tank assembly and intake pipe assembly, a seal member is interposed between the end surface of the intake pipe assembly and the mating surface of the surge tank assembly so as to seal off the intake passage and mounting holes individually. Thus, the seal member, combined with the use of the blind threaded holes for the threaded bolts joining the two parts, ensures the sealing of both the intake passages and mounting holes at the interface between the end surface of the intake pipe and the mating surface of the surge tank assembly in a both reliable and simple manner. Preferably, the seal member comprises an O-ring made of elastomeric material, and at least one of the mating surface and end surface is provided with a groove for receiving the seal member.