Abstract:
An improved tube solid-state laser (SSL) is provided utilizing diode pumping, microchannel cooling, optics, and/or new coating and bonding processes. Advantageously, thermal lensing effects, birefringence, bifocussing, and alignment problems associated with typical tube SSLs are eliminated or reduced while providing high beam quality and high average power levels.
Abstract:
A diode-end-pumped ˜812 nm thulium doped solid state laser is disclosed, with improved efficiency and practicality. The inventive laser device include laser active media comprising a thulium doped dielectric solid state gain element, placed within a laser cavity, and diode-end-pumped with ˜780 nm pump radiation. Solid state lasers emitting at a wavelengths of ˜406 nm, ˜270 nm, and ˜203 nm are also disclosed, based on nonlinear wavelength conversion of a ˜812 nm thulium:host solid state laser.
Abstract:
A high pulse energy, side pumped laser is provided. The laser has an optical cavity formed between a first and a second reflective surface. A lasing medium is located within the cavity along its optical axis. A plurality of diode bars are provided in optical communication with the lasing medium preferably a lasing rod. The diode bars supply electromagnetic radiation to the lasing rod. The diode bars are configured about the lasing rod so that electromagnetic radiation from the diodes bars propagates through the lasing rod on a plurality of substantially nonintersecting paths. Since the lasing rod is side pumped, the substantially nonintersecting paths traverse the lasing rod substantially perpendicular to the direction of propagation of energy in the laser cavity.
Abstract:
Laser processing methods, systems and apparatus having a super-modulating power supply (6) or pumping subsystem (5) and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser (2) is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
Abstract:
The inventive module of a light-pumped laser comprises light pump sources, a solid-state active element which is embodied in the form of a plate and provided with a couple of first opposite side faces, the distance therebetween defining the width of the active element for passing a pump radiation therethrough from the pump sources to the active element; a couple of second opposite side faces. The distance therebetween defining the thickness of the active element. which faces are embodied in the plane-parallel manner in order to direct a beam of formed laser radiation in such a way that it enables said beam to pass along the length of the active element in a zigzag manner, undergoing a total internal reflection from the couple of second side faces; a couple of end faces, the distance therebetween defining the length of the active element, and also heal-spreading devices which have a thermal contact with each second face in order So remove beat from the active element.
Abstract:
A system for removing waste energy in the form of sensible heat and fluorescent energy from a solid state laser medium having a broad surface. The system includes a manifold disposed about the laser medium having a plurality of inlet jets interspersed with a plurality of exhaust orifices. Coolant fluid is circulated through the manifold. The fluid is forced through the plurality of inlet jets to impinge the broad face of the laser medium, thereby transferring waste energy by convection from the laser medium to the coolant fluid. The coolant fluid is further circulated to exhaust the pumphead manifold through the plurality of exhaust orifices. The fluorescent energy, which is radiated from the laser medium, is converted to sensible heat by an absorber disposed within the coolant adjacent to the laser medium. The coolant then removes the converted heat by forced convection. The absorber can be suspended particles in the coolant fluid or a porous material supported in the manifold at some distance from the laser medium.
Abstract:
A DF or HF chemical laser gain generator fabricated by a platelet technique in which internal passages are more easily formed because the generator is made as a stack of thin platelets that are separately etched and then stacked together. The gain generator is water cooled through passages formed in it during the platelet fabrication process. Water cooling results in lower and more uniform operating temperatures and gas pressures, allowing the use of stronger metals which facilitate the elimination of supporting structures that can degrade laser beam quality. The fabrication method allows for the elimination of gas dynamic and thermally induced density gradients which further degrade laser beam quality.
Abstract:
A hand-held laser device includes a casing formed with a substantially hollow interior space and having a laser emitter thereinside. The laser emitter is formed with an exciting lamp and a laser rod. A source generating a stream of gaseous coolant is provided within the interior space. A fluid cooling arrangement at least partially surrounding the laser rod is disposed within the stream of gaseous coolant for heat removal therefrom.
Abstract:
The inventive module of a light-pumped laser comprises light pump sources, a solid-state active element which is embodied in the form of a plate and provided with a couple of first opposite side faces, the distance therebetween defining the width of the active element for passing a pump radiation therethrough from the pump sources to the active element; a couple of second opposite side faces, the distance therebetween defining the thickness of the active element, which faces are embodied in the plane-parallel manner in order to direct a beam of formed laser radiation in such a way that it enables said beam to pass along the length of the active element in a zigzag manner, undergoing a total internal reflection from the couple of second side faces; a couple of end faces, the distance therebetween defining the length of the active element, and also heat-spreading devices which have a thermal contact with each second face in order to remove heat from the active element. In order to reduce radiation divergence, increase the laser-excitation efficiency and to increase the heat resistance of the active element, said element is embodied in such a way that the width thereof is greater than the thickness thereof. For the purpose of the pump radiation, the first side faces are embodied in a transparent manner. The arrangement of the light pump sources with respect to the active element and the directional diagram thereof are such that at least one greater part of the pump radiation is diffused inside the active element along the width thereof in zigzag manner by means of the total internal reflection from the second side faces.
Abstract:
As a composite laser rod capable of satisfying the positional stability and output stability of a laser beam, a laser rod in which a laser active element is doped is intimately inserted into a hollow portion of a non-doped ceramic pipe that has a crystal structure the same as the laser rod followed by baking so as to remove a gap and strain at an interface between the laser rod and the ceramic pipe after the baking further followed by polishing a surface of the ceramic pipe to form a ceramic skin layer, and thereby a composite laser rod is formed. In the composite laser rod, an influence due to fluctuation in the cooling capacity of cooling water or a heat sink is averaged by a non-doped skin layer, temperature fluctuation of the laser rod is suppressed, and an influence of vibration from the cooling water or a cooling fan can be suppressed. When the refractive index of the laser rod is made higher than that of the ceramic pipe, a high efficiency oscillation can be realized, and furthermore when the thermal conductivity of the ceramic pipe is made higher than that of the laser rod, the thermal lens effect can be alleviated.