Abstract:
An electric power generation system may be constructed of multiple similar generator modules arranged between a rotor and a stator. The rotor may be coupled to and/or integrated with a turbine that is configured to rotate in the presence of a fluid stream such as wind or water. Each generator module may have a rotor portion configured to generate a magnetic field having at least one characteristic that changes with respect to the rotational speed of the rotor. Each generator module may further have a stator portion configured to generate an alternating electric current responsive to the magnetic field. The generated electric current may be controlled by the stator portion of the generator module in order to magnetically control the rotational speed of the rotor and the turbine. Separation between the rotor and stator portions of the generator module may be magnetically maintained.
Abstract:
A method for operating a wind turbine erected in a body of water, comprising: measuring vibrations of the wind turbine during operation; identifying at least one periodic component of said measured vibrations, wherein said periodic component is associated with interaction of said body of water and said wind turbine; and, operating at least one controller of said wind turbine so that water-induced vibrations are reduced.
Abstract:
A vehicle alternator and methods for controlling an amount of torque loading of the vehicle alternator on an engine are provided. The vehicle alternator utilizes a voltage regulator with a microprocessor to control an amount of torque loading, based on a rotational speed of a rotor of the alternator, or an amount of current output by the alternator, or both.
Abstract:
A magnetic braking system for inhibiting excessive motion between a float and a column intended to be placed in a body of water; with the float and column moving relative to each other as a function of the waves present in the body of water. The braking system includes a permanent magnetic assembly (PMA) mounted on, and attached to, one of the float and column and a coil assembly (or a conductive plate) mounted on, and attached to, the other one of the float and column. The braking system is mounted such that motion between the float and the column is inhibited when the displacement of the float relative to the column exceeds a predetermined operating range.
Abstract:
An electric propulsion system is provided which includes a prime mover; an electric generator which is arranged to be driven by the prime mover to generate electric power; an electric propulsion motor; and an integrated generator-motor controller arranged to control the supply of said electric power to the electric propulsion motor in response to a control signal. The integrated generator-motor controller is also arranged to feed-forward to the generator a power demand parameter associated with the control signal so as to control the power output of the generator.
Abstract:
A load adaptive linear electrical generator system is provided for generating DC electrical power. The electrical generation system includes one or more power generation modules which will be selectively turned on or off and additively contribute power depending on the DC power demand. Each power generating module includes a pair of linear electrical generators connected to respective ones of a pair of internal combustion piston based power assemblies. The piston in the internal combustion assembly is connected to a magnet in the linear electrical generator. The piston/magnet assembly oscillates in a simple harmonic motion at a frequency dependent on a power load of the electrical generator. A stroke limiter constrains the piston/magnet assembly motion to preset limits.
Abstract:
A method for controlling a wind turbine with a wind rotor (2), a doubly-fed induction generator (1) driven therewith, and a converter (4), which is electrically connected to feed electrical energy into an electrical grid (8) with at least one grid parameter, and having a controller with a memory in which rotation rate parameters are stored, characterized in that at least one variable characteristic curve is determined between at least one of the rotation rate parameters and the at least one grid parameter, the at least one characteristic is stored in the memory, the at least one grid parameter is measured, the grid parameter measurements are fed to the controller, the values of the at least one rotation rate parameter associated with the grid parameter measurements via the at least one characteristic curve are activated.
Abstract:
In some examples, an alternator control device includes interface configured to receive a voltage signal from an engine control device, pull-down circuitry, and a switch electrically connected between the interface and the pull-down circuitry. The alternator control device further includes processing circuitry configured to determine that the voltage signal is higher than a threshold voltage level and to activate the switch to electrically connect the interface to the pull-down circuitry in response to determining that the voltage signal is higher than the threshold voltage level. The processing circuitry is further configured to determine that, at least a threshold time duration after activating the switch, the voltage signal is higher than the threshold voltage level and to refrain from delivering the excitation current based on determining that, at least the threshold time duration after activating the switch, the voltage signal is higher than a threshold voltage level.
Abstract:
A DC electrical generation system for an aircraft propelled by a turbine engine, such as a turbojet, includes at least one electrical energy storage capacity, at least one generator driven mechanically by a rotation shaft of the turbine engine and electrical connections between the electrical energy storage capacity, the generator and the aircraft equipment for powering the above-mentioned equipment with DC current, also including at least one alternative for supplying DC current to the equipment, which are autonomous in relation to any mechanical driving by a rotation shaft of the turbine engine, and a device that can cut-off power to the generator(s) and simultaneously activate the alternative current supply. The power cut-off device for triggering power cut-off and activating the alternative current supply is controlled by a control or operating parameter of the turbine engine. The alternative current supply is preferably formed by one or more supercapacitors.
Abstract:
A power system for powering a load is provided. The power system includes a plurality of power sources with each power source including an engine. A SCR system is associated with the engine of at least one of the plurality of power sources. A controller is in communication with the plurality of power sources. The controller is configured to receive engine operation information, emission output information associated with each engine and conversion efficiency information associated with the SCR system and selectively apportion the power demand presented by the load between each of the plurality of power sources based on minimizing total engine emissions across the plurality of power sources and using the engine operation information, the emission output information and the conversion efficiency information.