Abstract:
A tube bundle falling film microreactor for performing gas-liquid reactions, which has: a) at least one vertical tube with b) a device for distributing the liquid on the inside of the tube and c) a liquid collecting system, and d) a device for gas supply and removal, and use thereof.
Abstract:
A micro-fluid reaction vessel includes an upper plate formed of an elastomer, a lower plate adhered to the upper plate, a micro-chamber and a micro-channel formed on an inner surface of the upper plate facing the lower plate and an inlet hole and an outlet hole formed in the upper plate and through which a fluid flows into or out of, respectively. The micro-channel is constructed to be closed by pressure applied to the upper plate and elastically restored when the pressure is not applied. A micro fluid reaction method uses the micro fluid reaction vessel and a method of manufacturing forms the microfluid reaction vessel.
Abstract:
A thin film manufacturing system, wherein a stage for placing a substrate thereon is disposed within a vacuum reactor and a gas head for supplying a film forming gas to a central area on a top face of the vacuum reactor is arranged so that the gas head is opposed to the stage. A cylindrical sleeve member is disposed and comes in close contact with a side wall of the stage to surround a periphery of the stage. The height of the stage can be established at the position where the volume of a second space formed below the stage and connected to a vacuum discharge means is larger than that of a first space formed above the stage, in such a manner that an exhaust gas is isotropically discharged from the first space without causing any convection current therein through the interstice between the sleeve member and an inner wall surface constituting the reactor.
Abstract:
Multitube falling film reactor (MTR) for continuous manufacturing of sulfonated and/or sulfated products using gaseous, diluted sulfur trioxide, (SO.sub.3(dil)) to produce surface active agents or simply surfactants, useful in the cosmetic and detergent industry. Each individual nozzle-set comprises a male part (19) and the other half (45) on the male part (10). The male part (10) forms together with the female part (19), an annular slot (21) with a constant and under all operational conditions well defined length (47), which together with a fixed opening/width determines the individual pressure drop of the said slot and thereby the individual organic flow. With this arrangement, completely homogenous distribution of organic feed is achieved without the necessity of calibration.
Abstract:
A reactor includes a reaction vessel that defines a reaction chamber. Completely or partially within the reaction chamber is at least one spiroid. The spiroid is operably associated with the reaction vessel so that rotation of the reaction vessel causes the spiroid to rotate and liquid to be transferred through the spiroid. The spiroid can circulate gas and liquid within the reaction chamber, introduce fresh gas and liquid into the reaction chamber or discharge gas and liquid from the reaction chamber.
Abstract:
A fluid medium such as a gas and a liquid medium are interacted within a convoluted array of tubes, wherein the liquid medium is present as "rain-fall" rather than flooding the array of tubes, with a heat transfer medium being passed through the tubes to heat or cool the liquid medium, as the case may be, to drive the mass transfer occurring in the interaction between gas and liquid medium.
Abstract:
A gas/liquid heat and/or mass exchanger including a chamber to hold the liquid, the bottom wall of the chamber defining at least one outlet orifice. A plurality of thin guide filaments descends from the orifice or orifices, and at least one thin, falling film of liquid flows down the filaments. The guide filaments are preferably substantially straight and under longitudinal tension. They may be either vertically oriented or tilted, and each one may be either a monofilament of multiple filament. An array of guide filaments may descend from each outlet orifice, and all such arrays may be parallel. A preferred form of the method of forming each outlet orifice is disclosed. A non-fouling nozzle for controlling the flow of liquid is disclosed as a subcombination.
Abstract:
An apparatus for establishing contact between a gas and a liquid comprises a contact body (3), means for wetting the body (3) with a liquid (1) and means for exposal of the wetted body (3) to a gas (2), said body (3) being mounted in an airtight chamber (4) being provided with openings (5,6) for passage of liquid (1) and conduits (8) for inlet and outlet of gas (2) to the chamber (4), a driving device (7) being arranged for forced inlet and outlet of gas (2).
Abstract:
A partial oxidizer and reformer comprising a tubular member having a wick adjacent its inner wall and a catalyzed metallic spiral adjacent the wick and further comprising an annular member connected to and surrounding the tubular member and in which is disposed a catalyst bed.
Abstract:
This invention relates to a process for carrying out reactions which primarily occur during the transport of compounds in the liquid phase or at the liquid-gas interface. Starting components are reacted with one another and/or with gases of the inner space in a multi-phase flow tube having a liquid ring flow which may contain dissolved and/or dispersed constituents. Any necessary heat exchange takes place between the liquid and the wall of the tube or the gases.