Abstract:
The liquid feed nozzle assemblies for a circulating fluid bed reactor comprise (i) a throttle body premixer to combine liquid feed with atomization steam to form a liquid feed/steam mixture comprising gas bubbles in liquid; (ii) a conduit connected to the premixer and to a discharge nozzle to convey a flow of the liquid/steam mixture created by the premixer to the nozzle body; (iii) a discharge nozzle connected to the flow conduit to shear the liquid feed/steam mixture to create liquid feed droplets of reduced size and (iv) a disperser at the outlet of the discharge nozzle to provide a spray jet of liquid feed having an increased surface area relative to a cylindrical jet. The nozzle assembles are particularly useful in fluid coking units using heavy oil feeds such a tar sands bitumen.
Abstract:
Crude oil is charged to a hydroprocessing zone in the presence of hydrogen operating under conditions effective to produce a hydroprocessed effluent, which is thermally cracked in the presence of steam in a steam pyrolysis zone to produce a mixed product stream. Heavy components, which are derived from one or more of the hydroprocessed effluent, a heated stream within the steam pyrolysis zone, or the mixed product stream catalytically cracking are charged to a slurry hydroprocessing zone to produce a slurry intermediate product which is then thermally cracked. Olefins and aromatics are recovered from the separated mixed product stream as product.
Abstract:
An efficient delayed coking process improvement for producing heavy coker gas oil of sufficient quality to be used as hydrocracker feedstock.
Abstract:
The current invention provides an improved petroleum coking process wherein the risk of silicone poisoning of units downstream of the coke drums is reduced. The method of the current invention controls the foam layer within the coke drum by injection of a silicone anti-foam agent in a highly aromatic carrier fluid such as slurry oil.
Abstract:
A method for producing a linear alkylbenzene product from a bio-renewable feedstock having a mixture of naturally-derived hydrocarbons includes separating the mixture of naturally-derived hydrocarbons into a naphtha portion and a distillate portion, reforming the naphtha portion, and using a high purity aromatics recovery process on the reformed naphtha portion to produce benzene. The method further includes separating a normal paraffins portion from the distillate portion and dehydrogenating the normal paraffins portion to produce mono-olefins. Still further, the method includes reacting the benzene and the mono-olefins to produce the linear alkylbenzene product.
Abstract:
In a hydrocarbon upgrading process, a hydrocarbon feed is treated in at least one of a steam cracker, catalytic cracker, coker, hydrocracker, and reformer under suitable conditions to produce a first stream comprising olefinic and aromatic hydrocarbons. A second stream composed mainly of C4 to C12 olefinic and aromatic hydrocarbons is recovered from the first stream and at least part of the second stream is contacted with a catalyst in the absence of added hydrogen under reaction conditions including a temperature of about 450° C. to about 70° C. effective to dealkylate, transalkylate, crack and aromatize components of the second stream to produce a third stream having an increased benzene and/or toluene content compared with the second stream and a C3− olefin by-product. The C3− olefin by-product and a fourth stream comprising toluene are then recovered from the third stream.
Abstract:
A method for converting carbon into a carbon oxide, comprises: contacting carbon with steam in presence of a carnegieite-like material of formula (Na2O)xNa2[Al2Si2)8], wherein 0
Abstract translation:一种将碳转化成碳氧化物的方法,包括:在碳酸钙类材料(Na 2 O)x Na 2 [Al 2 Si 2] 8]存在下使碳与蒸汽接触,其中0
Abstract:
A reactor process added to a coking process to modify the quantity or yield of a coking process product and/or modify certain characteristics or properties of coking process products.
Abstract:
Methods for extracting a kerogen-based product from subsurface (oil) shale formations rely on chemically modifying the shale-bound kerogen using a chemical oxidant so as to render it mobile. The oxidant is provided to a formation fluid in contact with the kerogen in the subsurface shale. An alkaline material is also provided to the formation fluid to mobilize organic acids which are produced during oxidation of the kerogen. A mobile kerogen-based product which includes the organic acids is withdrawn from the subsurface shale formation and further processed to isolate the organic acids contained therein. These organic acids are valuable as hydrocarbon products for creating commercial products and a portion of these organic acids can also be used in the process for extracting the kerogen-based product from the subsurface shale formation.
Abstract:
A heat exchanger for cooling reaction gas. A cooled tube receives hot reaction gas from a hot, uncooled tube. The cooled tube comprises a cooled inner tube and a tubular jacket that extends about the inner tube. A tubular connection is disposed between the uncooled and the cooled tubes, and includes a fork-shaped inlet head via which the inner tube is in communication with the uncooled tube. The inlet head is provided with an outer tubular section and an inner tubular section between which is disposed an intermediate space filled with heat-insulating material. The outer tubular section is connected to the tubular jacket. The inner tubular section is spaced slightly axially from the inner tube and is provided with an edge region that juts outwardly and is spaced slightly axially from the inner tube, this slight axial spacing being equal to or less than a maximum thermal expansion of the inlet head. A U-shaped sealing ring is disposed between facing end faces of the inner tube and the inner tubular section, and is disposed in a recess formed in the end face of the inner tubular section, the recess being disposed radially outwardly of the edge region of the inner tubular section.