摘要:
A maximum voltage selection circuit may include multiple inputs, each for receiving a different input voltage, an output for delivering the highest of the input voltages, and a voltage selection circuit. The voltage selection circuit may automatically select the input having the largest voltage magnitude, automatically deliver the voltage at the selected input to the output, and not draw quiescent operating current from any of the inputs. For each and every unique combination of two of the multiple inputs, the voltage selection circuit may include an enhancement mode FET with a channel connected in series between a first input of the unique combination of the two inputs and the output; a connection between the gate of the enhancement mode FET and the second input of the unique combination of the two inputs through the channel of a depletion mode FET; an additional enhancement mode FET with a channel connected in series between the second of the unique combination of the two inputs and the output; and a connection between the gate of the additional enhancement mode FET and the first of the unique combination of the two inputs through the channel of an additional depletion mode FET.
摘要:
A peak detector using a charge pump is provided. The peak detector includes a differential amplifier configured to receive an input signal to be detected through an input node and amplify the received signal; a current control logic configured to create two or more current control signals by comparing a signal output from the differential amplifier with two or more reference voltages; a mirror current source portion comprising two or more mirror current sources configured to be driven respectively by the current control signals from the current control logic; a capacitor configured to be charged or discharged by currents output from the mirror current sources; and a reset circuit configured to reset a voltage of the capacitor.
摘要:
A primary side wireless power transmitter inductively couplable to a secondary side wireless power receiver for supplying power to the wireless power receiver for receiving communications from the secondary side wireless power receiver through the inductive coupling comprises a primary side tank circuit receiving a signal on from the secondary side wireless power receiver. A phase delay or time delay circuit generates a fixed delay clock signal. A sample and hold circuit samples a tank circuit voltage utilizing the fixed phase or time delayed clock signal. A comparator is coupled to an output of the sample and hold circuit for extracting data or commands from the signal stream. A method of operating a primary side wireless transmitter inductively coupled to a secondary side wireless power receiver for supplying power to the wireless power receiver to power a load coupled to the receiver is also disclosed.
摘要:
In accordance with an embodiment, a method includes determining an amplitude of an input signal provided by a capacitive signal source, compressing the input signal in an analog domain to form a compressed analog signal based on the determined amplitude, converting the compressed analog signal to a compressed digital signal, and decompressing the digital signal in a digital domain to form a decompressed digital signal. In an embodiment, compressing the analog signal includes adjusting a first gain of an amplifier coupled to the capacitive signal source, and decompressing the digital signal comprises adjusting a second gain of a digital processing block.
摘要:
A squelch detector receives a first input signal, a second input signal, a first reference voltage and a second reference voltage. The first input signal and the second input signal are collaboratively defined as a differential input signal pair. The difference between the first reference voltage and the second reference voltage is defined as a squelch threshold. According to the squelch threshold, the squelch detector generates a detected signal to indicate whether the differential input signal pair is valid or not.
摘要:
A maximum voltage selection circuit may include multiple inputs, each for receiving a different input voltage, an output for delivering the highest of the input voltages, and a voltage selection circuit. The voltage selection circuit may automatically select the input having the largest voltage magnitude, automatically deliver the voltage at the selected input to the output, and not draw quiescent operating current from any of the inputs. For each and every unique combination of two of the multiple inputs, the voltage selection circuit may include an enhancement mode FET with a channel connected in series between a first input of the unique combination of the two inputs and the output; a connection between the gate of the enhancement mode FET and the second input of the unique combination of the two inputs through the channel of a depletion mode FET; an additional enhancement mode FET with a channel connected in series between the second of the unique combination of the two inputs and the output; and a connection between the gate of the additional enhancement mode FET and the first of the unique combination of the two inputs through the channel of an additional depletion mode FET.
摘要:
A power supply includes a power switch and a switch control circuit controlling a switching operation of the power switch using a comparison voltage generated according to an output, determining a clamping voltage by sensing an input voltage during a start-up period, and clamping the comparison voltage to the clamping voltage during the start-up period.
摘要:
A device and method for current detecting and discriminating is disclosed. The device includes a differential receiver configured to receive a current input, a positive-side Schmitt trigger in communication with the input stage, wherein the positive-side Schmitt trigger is configured to receive an output provided by the input stage, and wherein the positive-side Schmitt trigger is configured to create a positive-side Schmitt trigger output representative of the current input, and a negative-side Schmitt trigger in communication with the input stage, wherein the negative-side Schmitt trigger is configured to receive the output provided by the input stage, and wherein the negative-side Schmitt trigger is configured to create a negative-side Schmitt trigger output representative of the current input.
摘要:
A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.
摘要:
In high-speed flip-flops and complex gates using the same, the flip-flop includes a first PMOS transistor and second and third NMOS transistors, which are serially connected between a power supply voltage and a ground voltage. Gates of the first PMOS transistor and the second NMOS transistor are connected to input data. A gate of the third NMOS transistor is connected to a clock pulse signal. A logic level of a first intermediate node between the first PMOS transistor and the second NMOS transistor is latched by a first latch. The flip-flop further includes a fourth PMOS transistor and fifth and sixth NMOS transistors, which are serially connected between a power supply voltage and a ground voltage. Gates of the fourth PMOS transistor and the fifth NMOS transistor are connected to the first intermediate node. A gate of the sixth NMOS transistor is connected to the clock pulse signal. A logic level of a second intermediate node between the fourth PMOS transistor and the fifth NMOS transistor is latched by a second latch. Accordingly, intermediate nodes of the flip-flops are connected to ground voltages via two NMOS transistors upon logic level switching, rather than three or more, so that the switching time of the device is shortened.