Abstract:
A rigid-flex PCB includes an array of rigid PCB “islands” interconnected by a flexible PCB formed into flexible connectors. The conductive and insulating layers of the flexible PCB extend into the rigid PCBs, giving the electrical connections to the rigid PCBs added resistance to breakage as the rigid-flex PCB is repeatedly stressed by bending and twisting forces. In addition, the durability of the rigid-flex PCB is enhanced by making the power and signal lines driving the rigid PCBs redundant so that a breakage of a line will not necessarily affect the operation of the rigid PCB to which it is attached. The rigid-flex PCB is particularly applicable to light pads used in phototherapy, wherein LEDs mounted on the rigid-PCBs are powered and controlled through the redundant lines in the flexible PCB.
Abstract:
A variety of footed and leadless semiconductor packages, with either exposed or isolated die pads, are described. Some of the packages have leads with highly coplanar feet that protrude from a plastic body, facilitating mounting the packages on printed circuit boards using wave-soldering techniques.
Abstract:
In the fabrication of semiconductor packages, a leadframe is formed by masking and etching a metal sheet from both sides, and a plastic block is formed over a plurality of dice attached to die pads in the leadframe. A laser beam is used to form individual plastic capsules for each package, and a second laser beam is used to singulate the packages by severing the metal conductors, tie bars and rails between the packages. A wide variety of different types of packages, from gull-wing footed packages to leadless packages, with either exposed or isolated die pads, may be fabricated merely by varying the patterns of the openings in the mask layers and the width of the plastic trenches created by the first laser beam.
Abstract:
In a semiconductor package a lead having a bottom surface coplanar with the flat bottom surface of the plastic body extends outward at the bottom of the vertical side surface of the plastic body. The result is a package with a minimal footprint that is suitable for the technique known as “wave soldering” that is used in relatively low-cost printed circuit board assembly factories. Methods of fabricating the package are disclosed, in particular a method of fabricating a package including an exposed die pad.
Abstract:
A power package includes a heat tab extending from a die pad exposed on the underside of the package, which facilitates the removal of heat from the die to the PCB or other surface on which the package is mounted. The heat tab has a bottom surface coplanar with the flat bottom surface of the die pad and bottom surface of a lead. The lead includes a horizontal foot segment, a vertical columnar segment, and a horizontal cantilever segment facing the die pad. The heat tab may also have a foot. A die containing a power device is mounted on a top surface of the die pad and may be electrically connected to the lead using a bonding wire or clip. The die may be mounted on the die pad with an electrically conductive material, and the package may also include a lead that extends from the die pad and is thus electrically tied to the bottom of the die. The result is a package with a minimal footprint that is suitable for the technique known as “wave soldering” that is used in relatively low-cost printed circuit board assembly factories. Methods of fabricating the package are disclosed.
Abstract:
In a remote medical checkup system, a patient's symptoms are transmitted for review to a medical service provider, the medical service provider prescribes diagnostic tests using an identified biometric sensor, the tests are performed by the patient, and the results of the tests are transmitted back to the medical service provider, all using a cloud-based server or other storage device. With this system, the tests are performed and the results reported promptly, without the patient having to schedule a visit to the office of the medical service provider.
Abstract:
A method is disclosed of fabricating a power package which includes a heat tab extending from a die pad exposed on the underside of the package, which facilitates the removal of heat from the die to the PCB or other surface on which the package is mounted. The heat tab has a bottom surface coplanar with the flat bottom surface of the die pad and bottom surface of a lead. The lead includes a horizontal foot segment, a vertical columnar segment, and a horizontal cantilever segment facing the die pad. The heat tab may also have a foot. A die containing a power device is mounted on a top surface of the die pad and may be electrically connected to the lead using a bonding wire or clip. The die may be mounted on the die pad with an electrically conductive material, and the package may also include a lead that extends from the die pad and is thus electrically tied to the bottom of the die. The result is a package with a minimal footprint that is suitable for the technique known as “wave soldering” that is used in relatively low-cost printed circuit board assembly factories.
Abstract:
A variety of footed and leadless semiconductor packages, with either exposed or isolated die pads, are described. Some of the packages have leads with highly coplanar feet that protrude from a plastic body, facilitating mounting the packages on printed circuit boards using wave-soldering techniques.
Abstract:
In a semiconductor package a lead having a bottom surface coplanar with the flat bottom surface of the plastic body extends outward at the bottom of the vertical side surface of the plastic body. The result is a package with a minimal footprint that is suitable for the technique known as “wave soldering” that is used in relatively low-cost printed circuit board assembly factories. Methods of fabricating the package are disclosed.
Abstract:
A variety of footed and leadless semiconductor packages, with either exposed or isolated die pads, are described. Some of the packages have leads with highly coplanar feet that protrude from a plastic body, facilitating mounting the packages on printed circuit boards using wave-soldering techniques.