Abstract:
A microcontroller operable in a high power mode and a low power unit (LPU) run mode includes primary and LPU domains, primary and LPU mode controllers, and primary and LPU clock generator modules. The primary domain includes a first set of circuits and a first set of cores. The LPU domain includes second and third sets of circuits, a second set of cores, and a switching module. In the high power mode, the switching module connects the first and second sets of cores to at least one of the first, second and third sets of circuits, while in the LPU run mode, the switching module isolates the LPU domain from the primary domain and activates a small microcontroller system (SMS) that includes the LPU domain, the LPU mode controller and the LPU clock generator module. The SMS has further low power modes within the LPU run mode.
Abstract:
A clocking system, comprises a plurality of clocked data processing devices and a clock control circuit controlling a generation of a plurality of clock signals and an application of the clock signals to the plurality of data processing devices, allowing to clock at least one of the data processing devices while freezing all but the at least one of the data processing devices. A method for clocking a plurality of clocked data processing devices comprises controlling a generation of a plurality of clock signals and controlling an application of the clock signals to the plurality of data processing devices, allowing to clock at least one of the data processing devices while freezing all but the at least one of the data processing devices.
Abstract:
Apparatus suitable for detecting a fault in a processor comprises a monitor which receives input and output signals from the processor and generates a hash index key which is used to access entries in a hash table. The entries may include actions such as setting a timer so that the response of an output to a change of state of an input may be confirmed as valid within a specified time interval.
Abstract:
An integrated circuit device comprising at least one analogue to digital converter. The at least one ADC comprises at least one input operably coupled to at least one external contact of the integrated circuit device. The integrated circuit device further comprises detection circuitry comprising at least one detection module. The at least one detection module being arranged to receive at a first input thereof an indication of a voltage level at the at least one input of the at least one ADC, compare the received indication to a threshold value, and if the received indication exceeds the threshold value, output an indication that an excessive voltage state at the at least one input of the at least one ADC has been detected.
Abstract:
Apparatus suitable for detecting a fault in a processor comprises a monitor which receives input and output signals from the processor and generates a hash index key which is used to access entries in a hash table. The entries may include actions such as setting a timer so that the response of an output to a change of state of an input may be confirmed as valid within a specified time interval.
Abstract:
A method of controlling direct memory access of a peripheral memory of a peripheral by a master is described. The method includes checking whether there is a pending request from the peripheral for a direct memory access service, establishing whether an access condition is satisfied in dependence on at least whether there is a pending request, and, if the access condition is satisfied, granting access to the master. Also, an associated device and an associated computer program product are described.
Abstract:
A power management system permits a small microcontroller subsystem or low power domain to continuously operate while a main subsystem domain is cycling from power on to off. The power management system supports asynchronous domains with common shared peripherals. The asynchronous domains operate as a single entity while in a full power mode with the peripheral and system resources being shared. The system can be used in automotive systems where most of the system is power-gated leaving just a power regulator controller, some counters and an input/output segment alive for wakeup purposes.
Abstract:
A system on chip, comprising a processing unit for executing processes, a memory unit, and a memory control unit connected between the processing unit and the memory unit, is described. The memory control unit allocates a memory region to a process. The memory control unit comprises a process activity counter which counts a duration of the process or transactions by the process to or from the memory region and which maintains a process activity count representing the counted duration of the process or the counted transactions to or from the memory region. The memory control unit disables the memory region in response to the process activity count exceeding a maximum process activity count. Notably, it blocks the memory region against further transactions by the process and against transactions by any other processes.A method of operating a system on chip is also described.
Abstract:
An integrated circuit device comprising at least one analog to digital converter. The at least one ADC comprises at least one input operably coupled to at least one external contact of the integrated circuit device. The integrated circuit device further comprises detection circuitry comprising at least one detection module. The at least one detection module being arranged to receive at a first input thereof an indication of a voltage level at the at least one input of the at least one ADC, compare the received indication to a threshold value, and if the received indication exceeds the threshold value, output an indication that an excessive voltage state at the at least one input of the at least one ADC has been detected.
Abstract:
A clocking system, comprises a plurality of clocked data processing devices and a clock control circuit controlling a generation of a plurality of clock signals and an application of the clock signals to the plurality of data processing devices, allowing to clock at least one of the data processing devices while freezing all but the at least one of the data processing devices. A method for clocking a plurality of clocked data processing devices comprises controlling a generation of a plurality of clock signals and controlling an application of the clock signals to the plurality of data processing devices, allowing to clock at least one of the data processing devices while freezing all but the at least one of the data processing devices.