Abstract:
The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense.
Abstract:
A position sensor comprises a resistive element positionable on a first surface. A pair of leads are on the resistive element, the pair of leads adapted to supply a first voltage, such as by being grounded. An intermediate lead is positioned on the resistive element between the pair of leads, the intermediate lead being adapted to provide a second voltage. A contact element is positionable on a second surface, the contact element adapted to contact at least a portion of the resistive element to detect a voltage at a contact position, the detected voltage being related to the position or movement of the second surface relative to the first surface. In another version, a position sensor comprises a resistive element comprising first and second resistive strips. A plurality of leads are positioned on each resistive strip to provide a voltage to each resistive strip.
Abstract:
The present invention discloses the integration of programmable microfluidic circuits to achieve practical applications to process biochemical and chemical reactions and to integrate these reactions. In some embodiments workflows for biochemical reactions or chemical workflows are combined. Microvalves such as programmable microfluidic circuit with Y valves and flow through valves are disclosed. In some embodiments microvalves of the present invention are used for mixing fluids, which may be part of an integrated process. These processes include mixing samples and moving reactions to an edge or reservoir for modular microfluidics, use of capture regions, and injection into analytical devices on separate devices. In some embodiments star and nested star designs, or bead capture by change of cross sectional area of a channel in a microvalve are used. Movement of samples between temperature zones are further disclosed using fixed temperature and movement of the samples by micropumps.
Abstract:
A priming unit for a microfluidics device contains a pressurization unit and pressure and temperature detectors as part of a feedback loop that controls the pressure applied by the pressurization unit and the time during which the pressure is applied. This control feature is particularly useful in controlling the exposure time of the microchannels to dyes in the priming liquids since certain dyes tend to adhere to the walls of the channels and produce non-uniform results.
Abstract:
A priming unit for a microfluidics device contains a pressurization unit and pressure and temperature detectors as part of a feedback loop that controls the pressure applied by the pressurization unit and the time during which the pressure is applied. This control feature is particularly useful in controlling the exposure time of the microchannels to dyes in the priming liquids since certain dyes tend to adhere to the walls of the channels and produce non-uniform results.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense.
Abstract:
Methods and devices for the interfacing of microchips to various types of modules are disclosed. The technology disclosed can be used as sample preparation and analysis systems for various applications, such as DNA sequencing and genotyping, proteomics, pathogen detection, diagnostics and biodefense.
Abstract:
A microfluidic system and method for employing it to control fluid temperatures of fluids residing within microchannels of a microfluidic device. The microfluidic device is provided with a top layer and a bottom layer and microchannels configured therebetween. Temperature of the fluid within the microchannels is controlled in various ways including the use of electrical resistive heating elements and by providing zones located in contact with the top and bottom layers of the microfluidic device for circulating heat transfer of fluid therein.