摘要:
An exhaust gas treatment device for an internal combustion engine, with a first particle filter and a second particle filter arranged downstream of the first particle filter in the flow direction of the exhaust gas through the exhaust gas treatment device. The second particle filter includes a support device that can be flown through by the exhaust gas, on which a filter unit is disposed. A pore size of the filter unit is less than a pore size of the support device. A method for operating an exhaust gas treatment device for an internal combustion engine is also provided.
摘要:
In a method for operating an emission control system having nitrogen oxide storage, for cleaning up a nitrogen oxide-containing, sulfur-contaminated exhaust gas from combustion equipment, from time to time desulfating phases are performed for releasing sulfur intercalated in the nitrogen oxide storage. Two desulfating modes are provided, namely, a main desulfating mode for substantially completely desulfating the nitrogen oxide storage and a partial desulfating mode for partially desulfating same, a lower nitrogen oxide storage minimum temperature and a shorter desulfating target duration being predefined for the partial desulfating processes than for the main desulfating processes. The method may be used, for example, in emission control systems of predominantly lean-combustion operated Otto engines of motor vehicles.
摘要:
A method of operating an exhaust-emission control system with a nitrogen oxide adsorber and a loading sensor includes alternately operating the nitrogen oxide adsorber in adsorption phases with an at least stoichiometric exhaust air ratio and in regeneration phases with an at most stoichiometric exhaust air ratio. The loading sensor is able to ascertain continuously the nitrogen oxide loading of the adsorber even during the regeneration phases. By suitable evaluation of the loading sensor signal, the time for a changeover from an adsorption phase to a desorption phase and vice versa is determined. In addition, the storage capacity of the adsorber at a given time, when desulphating of the adsorber should take place, and whether the desulphating effect achieved was adequate, are determined.
摘要:
A direct-injection Otto cycle internal-combustion engines can be operated in the stratified charge mode with a later fuel injection during the compression cycle and a lean mixture formation and, with an operating mode with a homogeneous mixture formation, by fuel injection during the intake cycle which is provided for higher load ranges of the internal-combustion engine. The exhaust gases of the internal-combustion engine are decontaminated by an NOx storage catalyst which must be periodically regenerated during a homogeneous mixture formation and at rich fuel/air ratios (&lgr;). To permit a fast change of the operating mode and particularly the regeneration of the storage catalyst without changing the running performance of the internal-combustion engine, the fuel quantity to be injected per power cycle, is apportioned during a homogeneous operating phase during the change of operating modes, corresponding to the actual intake air flow rate by adjusting the respective injection time. Isochronously and proportionally to the change of the injection time, the ignition point in time is adjusted in the direction of a late ignition. The homogeneous operating phase is limited by a change-over point in time at which the injection end of the fuel injection is shifted into the power cycle provided for the demanded operating mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An internal combustion engine includes an exhaust-gas aftertreatment device, and an operating method is for operating the internal combustion engine. The internal combustion engine is operable with a lean mixture and a rich mixture, the internal combustion engine having an exhaust-gas aftertreatment device, which includes a nitrogen oxide storage catalytic converter and a particle filter. When lean exhaust gas flows through the nitrogen oxide storage catalytic converter, it removes nitrogen oxides from the exhaust gas by storing them, and, when reducing exhaust gas flows through the nitrogen oxide storage catalytic converter, it produces ammonia through reduction of stored and/or supplied nitrogen oxides and releases it to the exhaust gas. Downstream from the nitrogen oxide storage catalytic converter, the exhaust-gas aftertreatment device includes a SCR catalytic converter, which reduces nitrogen oxides contained in the exhaust gas, using ammonia produced by the nitrogen oxide storage catalytic converter.
摘要:
In a method of operating a particle filter in an exhaust system of a motor vehicle internal combustion engine, wherein the particle filter is reconditioned, in intervals, by a soot-burn-off procedure, the amount of noncombustible ashes also collected in the particle filter is reduced by heating the particle filter and supplying to the particle filter, together with the exhaust gas of the internal combustion engine, a reducing agent which reacts with the ash deposits so as to chemically convert the ash deposits such that at least non-metallic ash components are decomposed and carried out of the particle filter by the exhaust gas.
摘要:
A method reduces harmful exhaust-gas emissions of a spark-ignition, direct fuel injection engine operated with a lean fuel/air mixture. Under part load, the engine is operated in the stratified-charge mode with a &lgr; value of >1, and to reduce nitrogen oxides adsorbed on a catalyst, a jump to a homogeneous mode with air ratios of lambda
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.
摘要:
An exhaust gas aftertreatment installment and associated exhaust gas aftertreatment method utilizes a nitrogen oxide storage catalytic converter and an SCR catalytic converter. A particulate filter is provided upstream of the nitrogen oxide storage catalytic converter or between the latter and the SCR catalytic converter or downstream of the SCR catalytic converter. The time of regeneration operating phases of the nitrogen oxide storage catalytic converter can be determined as a function of the nitrogen oxide content of the exhaust gas downstream of the nitrogen oxide storage catalytic converter or of the SCR catalytic converter and/or as a function of the ammonia loading of the latter. Moreover, a desired ammonia generation quantity can be determined for a respective regeneration operating phase. The installation and method are adopted for use for motor vehicle internal combustion engines and other engines which are operated predominantly in lean-burn mode.