Abstract:
The present invention relates to a catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range, comprising a porous support; Group III A or VA element in the range of 1-10 wt %; Group VI B elements in the range of 1 to 20 wt %; Group VIII B elements in range of 0.01 to 10 wt %. The present invention further provides the process for preparing the catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range. The present invention also provides the process for conversion of vegetable oils to hydrocarbon products in the diesel boiling range using the catalyst composition or discarded refinery spent hydro-treating catalyst.
Abstract:
The present invention relates to an advanced process control system (APC) for a continuous catalytic regeneration reformer with master-slave configuration to control coke on spent catalyst while maximizing heavy reformate octane barrel using online inferential, both for coke content of spent catalyst and octane of heavy reformate. Further, the present invention relates to provide an APC system for a continuous catalytic regeneration reformer with master-slave configuration, which comprises of a master APC, a reactor APC, and a regenerator APC, wherein, the reactor APC and the regenerator APC are linked to the master APC.
Abstract:
Methods, apparatus and processes for three phase contacting and reactions in a cross flow reactor with reduced feed vaporization, low pressure operation, higher liquid holdup, lower reactor pressure drop, low severity operation, and reduced product inhibitory effects. A cross flow reactor for three phase catalytic hydroprocessing, having at least one reactor stage is disclosed. The reactor stage has a central gas distributor with perforated lateral surface for distributing gas, a middle region accommodating a packed catalyst bed, and an outer gas space for removal of effluent gases from the middle region. The middle region receives a liquid reactant and gas from central gas distributor to carry out three phase catalytic hydroprocessing reaction.
Abstract:
An aspect of the present disclosure relates to a process for preparing a composite hydroalkylation catalyst including: (a) effecting impregnation of a hydrogenation metal on an inorganic oxide to form a metal impregnated inorganic oxide; (b) effecting calcination of the metal impregnated inorganic oxide to obtain a calcined metal impregnated inorganic oxide; (c) preparing a composite mixture comprising a molecular sieve, the calcined metal impregnated inorganic oxide and a binder; (d) preparing an extruded catalyst; and (e) effecting calcination of the extruded catalyst to obtain the composite hydroalkylation catalyst. The composite hydroalkylation catalyst prepared using this process affords dramatic improvement in conversion of mononuclear aromatic hydrocarbon and the yield of the hydroalkyled mononuclear aromatic hydrocarbon (e.g. CHB).
Abstract:
A domestic cooking stove comprises a frame that mounts a primary tube, one or more of nozzles for fuel injection, knobs for controlling the fuel injection, mixing tubes for modulating pressure gradient, burner tops for combustion of the air fuel mixture, and pan supports to support the vessel, heat reflectors to reflect heat, and legs to support the frame. Each heat reflector is positioned above burner top to provide secondary air entrainment for combustion by reducing a gap between an inner circumference of heat reflector and an outer circumference of the burner top to minimize heat losses. The heat reflector has a curved orientation to reduce heat transfer in a downward direction and generates eddies that increases heat transfer towards vessel bottom. The legs are positioned below the frame and has a predetermined height to maintain a gap between table top and the frame bottom surface for entrainment of air.
Abstract:
In accordance with the present subject matter there is provided a process for producing mono-, di- and triesters of glycerol over a catalyst composition. The catalyst composition including a base catalyst and a support material based on phyllosilicates of montmorillonite structure and the process for preparing the catalyst composition is also described.
Abstract:
The present disclosure provides a fuel composition for improving the lubricity property. Further provided is a process for preparation of the composition.
Abstract:
The present disclosure provides methods and apparatus for catalytic cracking of hydrocarbon feed. The apparatus includes a plurality of stages, wherein hydrocarbon feed is introduced into a bottom stage reactor and flows in an overall upward direction. A reaction catalyst stream is introduced into a top stage reactor and flows in an overall downward direction. In each of the stages, the hydrocarbon feed is allowed to come in contact with the reaction catalyst stream received at the particular stage for cracking of the hydrocarbon feed. The final cracked product stream is obtained at an outlet of the top stage reactor and a final spent catalyst stream is obtained at an outlet of the bottom stage reactor.
Abstract:
The present invention relates to a catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range, comprising a porous support; Group III A or VA element in the range of 1-10 wt %; Group VI B elements in the range of 1 to 20 wt %; Group VIII B elements in range of 0.01 to 10 wt %. The present invention further provides the process for preparing the catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range. The present invention also provides the process for conversion of vegetable oils to hydrocarbon products in the diesel boiling range using the catalyst composition or discarded refinery spent hydro-treating catalyst.
Abstract:
A dividing wall column system for producing hexane includes a dividing wall column including a dividing wall that divides the dividing wall column at least partially into a first side and a second side, with one side of the first and second sides configured to operate as a deisohexanizer column and the other side of the first and second side configured to operate as a hexane column to produce hexane.