摘要:
A centrifugal force-based microfluidic device for nucleic acid extraction and a microfluidic system are provided. The microfluidic device includes a body of revolution; a microfluidic structure disposed in the body of revolution, the microfluidic structure including a plurality of chambers, channels connecting the chambers, and valves disposed in the channels to control fluid flow, the microfluidic structure transmitting the fluid using centrifugal force due to rotation of the body of revolution; and magnetic beads contained in one of the chambers which collect a target material from a biomaterial sample flowing into the chamber, wherein the microfluidic structure washes the magnetic beads which collect the target material, and separates nucleic acid by electromagnetic wave irradiation from an external energy source to the magnetic beads. The microfluidic system includes the microfluidic device; a rotation operating unit which rotates the body of revolution; and an external energy source which irradiates electromagnetic waves.
摘要:
Provided are a valve filler and a valve unit including the valve filler. The valve filler includes: a phase transition material; and a heating fluid comprising a carrier oil and a plurality of micro heating particles suspended in the carrier oil, the heating fluid being mixed with the phase transition material, wherein, when external energy is supplied, the micro heating particles receive the external energy and generate heat to melt the phase transition material into a fluid state, and when no external energy is supplied, the phase transition material hardens into a solid state.
摘要:
Provided is a rotatable microfluidic device for conducting simultaneously two or more assays. The device includes a platform which can be rotated, a first unit which is disposed at one portion of the platform and detects a target material from a sample using surface on which a capture probe selectively binds to the target material is attached, and a second unit which is disposed at another portion of the platform and detects a target material included in the sample by a different reaction from the reaction conducted in the first unit.
摘要:
Provided are an apparatus and a method of controlling a microfluidic system, and the microfluidic system. The apparatus of controlling the microfluidic system includes a central control block controlling an operation of the microfluidic system, a rotator control block controlling a rotator, a position control block controlling the position of a moving unit, the moving unit moving to a position of the microfluidic structure, and a radiation energy source control block controlling energy of a radiation energy source, the radiation energy source using an electromagnetic wave to scan over a position of the microfluidic structure. Such a configuration allows effective control of a miniaturized portable microfluidic system.
摘要:
Provided are a valve unit and a reaction apparatus having the valve unit. The valve unit includes a phase transition material, which melts and expands upon an application of the electromagnetic waves to the valve filler, and the valve filler is directed into the channel through the connection passage and closes the channel. The valve unit also includes heat generation particles, which are dispersed in the phase transition material and generate heat upon an application of electromagnetic wave energy.
摘要:
A centrifugal force-based microfluidic device for the detection of a target biomolecule and a microfluidic system including the same are provided. The device includes a body of revolution; a microfluidic structure disposed in the body of revolution including chambers, channels connecting the chambers, and valves disposed in the channels to control fluid flow, the microfluidic structures transmitting fluid using centrifugal force due to rotation of the body of revolution; and beads disposed in the microfluidic structures, the beads having capture probes on the surfaces thereof which are selectively bonded with target protein; and a detection probe disposed in the microfluidic structures and selectively bonded to the target protein, and which includes a material required to express an optical signal, wherein the microfluidic structure mixes the beads, biological samples, and the detection probe to react and washes and separates the beads after the reaction.
摘要:
One or more exemplary embodiments providing an assay material including an assay material that includes a substrate, a compound linked to the substrate wherein the compound is linkable specifically to a target, and a patterned region disposed on the substrate wherein the patterned region provides an optical output signal when an incident optical signal is irradiated thereto and wherein the optical output signal corresponds to a code on the substrate.
摘要:
Provided is a droplet dispensing device having a nonconductive capillary nozzle. The droplet dispensing device comprises: a nonconductive capillary nozzle disposed in a downward position; a pump connected with the nonconductive capillary nozzle through a hermetically sealed fluid tube and generating a negative pressure to decrease the influence of gravity on a solution within the nonconductive capillary nozzle and the fluid tube; and an open circuit voltage supplier applying a voltage to the solution. The droplet dispensing device supplies the solution by capillary force to regularly maintain the shape of a droplet surface in the tip of the nonconductive capillary nozzle without using a separate driving device.
摘要:
Provided are a centrifugal force based microfluidic device which can automatically perform a dilution operation and a microfluidic system including the same. The centrifugal force based microfluidic device for dilution includes a rotatable disk type platform, a mixing chamber disposed on the platform; a buffer solution storage disposed on a portion of the platform which is closer to a center of the platform than the mixing chamber, connected to the mixing chamber through a channel to supply a predetermined amount of buffer solution to the mixing chamber at least one time, and a plurality of diluted solution chambers which are disposed on a portion of the platform which is farther from the center of the platform than the mixing chamber, are each connected to the mixing chamber through flow paths extended from a middle exit corresponding to a predetermined water level, and sequentially receiving a solution which is serially diluted in the mixing chamber at least one time.