摘要:
Provided are a flux cored arc welding wire able to improve low-temperature toughness of a weld joint and a weld joint using the same, in which the flux cored arc welding wire includes 0.01 wt % to 0.1 wt % of carbon (C), 0.3 wt % to 1.4 wt % of silicon (Si), 1.0 wt % to 3.0 wt % of manganese (Mn), 4.0 wt % to 7.5 wt % of titanium (Ti)+TiO, 0.01 wt % to 3.0 wt % of nickel (Ni), 0.01 wt % to 0.2 wt % of boron (B), 0.02 wt % to 0.42 wt % of yttrium (Y) or 0.02 wt % to 0.56 wt % of a rare earth metal (REM), and iron (Fe) as well as other unavoidable impurities as a remainder.
摘要:
The present invention relates to a reflection plate for a backlight unit in a liquid crystal display device, and more particularly, to a reflection plate for a backlight unit in a liquid crystal display device, which is made of a thermoplastic thermal conductive resin composition having a thermal conductivity of at least 0.35 W/mK, thereby effectively solving the thermal problem of the backlight unit, and having excellent properties such as shock resistance, heat resistance, mechanical strength, and the like, as well as having excellent reflectivity, thereby improving the durability of the liquid crystal display device.Furthermore, the present invention relates to a backlight unit of a liquid crystal display device, comprising a reflection plate positioned at a lower portion of a lamp of the backlight unit for reflecting the light coming out of the lamp, a supporting rod for the lamp, and a lower plate functioning as a heat sink, wherein the reflection plate and the lower plate are made of the same material, thereby effectively solving the thermal problem of the backlight unit, and simplifying the manufacturing process.
摘要:
Disclosed is a composite electrolyte membrane comprising a microporous polymer substrate and a sulfonated polymer electrolyte. The composite electrolyte membrane comprises: a first polymer electrolyte layer formed of a first non-fluorinated or partially-fluorinated sulfonated polymer electrolyte; a non-fluorinated or partially-fluorinated microporous polymer substrate stacked on the first polymer electrolyte layer, wherein pores of the microporous polymer substrate are impregnated with a second non-fluorinated or partially-fluorinated sulfonated polymer electrolyte, and the first polymer electrolyte and the second polymer electrolyte are entangled with each other on an interface thereof; and a third polymer electrolyte layer formed on the microporous polymer substrate impregnated with the second polymer electrolyte by a third non-fluorinated or partially-fluorinated sulfonated polymer electrolyte, wherein the second polymer electrolyte and the third polymer electrolyte are entangled with each other on an interface thereof. A method for manufacturing the composite electrolyte membrane, and a membrane-electrode assembly (MEA) and a fuel cell comprising the composite electrolyte membrane are also disclosed.
摘要:
Disclosed is an organic/inorganic composite electrolyte membrane comprising: (a) a sulfonated fluorine-free hydrocarbon-based polymer; and (b) inorganic particles capable of collecting moisture, wherein the inorganic particles include zeolite. Also, disclosed are an electrode comprising the zeolite as a component for forming a catalyst layer, a membrane electrode assembly comprising the electrolyte membrane and/or the electrode, and a fuel cell having the membrane electrode assembly. The organic/inorganic composite electrolyte membrane using the hydrophilic zeolite in combination with the sulfonated fluorine-free hydrocarbon-based polymer shows high proton conductivity, and thus can impart excellent quality to a fuel cell even under high-temperature and low-humidity conditions.
摘要:
The present invention relates to a low surface gloss styrene resin composition. The composition of the present invention is composed of (A) 80-99.9 weight % of the basic resin comprising rubber-modified styrene resin and (B) 0.1-20 weight % of syndiotactic polystyrene, the matting agent. The composition also includes (C) hydrogenated styrene block copolymer comprising styrene block and butadiene rubber block as a compatibilizer by 0.1-20 weight % for the total weight of the low surface gloss styrene resin composed of (A) the basic resin and (B) the matting agent and additionally includes (D) a plasticizer by 0.1-30 weight %. The composition of the present invention has excellent weatherability and impact-resistance in addition to the low surface gloss properties, so that it can be applied in various products, particularly exterior products for structures such as sidings and window frames, etc.
摘要:
The present invention relates to a novel benzimidazole compound represented by formula 1. The novel benzimidazole compound of the present invention is very useful for the production of polymers used as a functional polymer thin film by polymerization with bishydroxy compound. Wherein, X is a halogen such as F, Cl, Br or I, Y is a functional group having strong electron-drawing force such as nitro (—NO2) or trifluoromethyl (—CF3).
摘要:
The present invention relates to a microcellular foam of a thermoplastic resin and a method for preparing the same, and more particularly to a microcellular foam comprising a skin layer having a porosity of below 5% and a core layer having a porosity of at least 5%, wherein the thickness of the skin layer accounts for 5 to 50% of the entire foam, and a method for preparing the same. The microcellular foam of the present invention is advantageous in that it has a thicker skin layer and smaller and uniform micropores in the core layer, compared with conventional microcellular foams, while having mechanical properties comparable to those of conventional non-foamed sheets.
摘要:
Provided are a nanocomposite including a layered inorganic material and a random copolymer containing a hydrophobic monomer and a hydrophilic monomer, a polymer composition including the nanocomposite, and a method for preparing the polymer composition. The random copolymer can be prepared at a low cost in a simple process and function as a compatibilizer in small amounts to maintain excellent properties of the nanocomposite including excellent mechanical characteristics such as abrasion resistance, hardness, tensile modulus and tear resistance, excellent thermal characteristics, high liquid and gas permeability, and low flammability.
摘要:
A branched multiblock polybenzimidazole-benzamide copolymer, specifically, one consisting of a repeating unit represented by Formula 1, and a method for preparing the same; an electrolyte membrane using the branched multiblock copolymer, a consistent electrolyte paste/gel and a method for preparing the same; a membrane-electrode assembly (MEA) using the electrolyte membrane and the consistent electrolyte paste/gel and a method for preparing the same; and a fuel cell prepared from the membrane-electrode assembly. The electrolyte membrane according to the present invention has high hydrogen ion conductivity over a wide temperature range, and excellent physical properties such as mechanical properties, chemical resistance and thermal stability. Deterioration of the membrane properties is effectively controlled by phosphoric acid doping and high hydrogen ion conductivity is realized even with a low phosphoric acid doping level. This consistent electrolyte paste/gel may be useful in improving the operating performance of a fuel cell by coating the electrolyte uniformly.
摘要:
The present invention relates to a novel polybenzimidazole-benzamide copolymer composed of the repeating units represented by formula 1 which is applicable to the electrolyte membrane of fuel cell and a preparation method of the same. The present invention also relates to an electrolyte membrane produced from the above copolymer of the invention and a preparation method thereof. The present invention further relates to a membrane-electrode unit for fuel cell containing the electrolyte membrane of the invention and a fuel cell system including the unit. The electrolyte membrane prepared by the polybenzimidazole-benzamide copolymer of the invention has improved proton conductivity, compared with the conventional polybenzimidazole polymer membrane, and has thermal and chemical stability in addition to the operating capacity in a wide temperature range. Wherein, x is 0.1˜99.9.