Abstract:
Techniques are provide for linking actions in an online fantasy sports game to a currency balance associated with a user of the game. The techniques adjust the balance by a first quantity in response to a sports player action, where the first quantity is based upon the player action, and adjust the balance by a second quantity in response to transfer of a sports player to or from a fantasy sports team associated with the user, where the second quantity is based upon a value of the sports player; and, prevent transfer of the sports player to the fantasy sports team in response to the second quantity being greater than the balance. The currency balance may be increased by the first quantity in response to the sports player action. The sports player action may include scoring a number of game points, and the first quantity may be based upon the number of game points.
Abstract:
Techniques are provide for linking actions in an online fantasy sports game to a currency balance associated with a user of the game. The techniques adjust the balance by a first quantity in response to a sports player action, where the first quantity is based upon the player action, and adjust the balance by a second quantity in response to transfer of a sports player to or from a fantasy sports team associated with the user, where the second quantity is based upon a value of the sports player; and, prevent transfer of the sports player to the fantasy sports team in response to the second quantity being greater than the balance. The currency balance may be increased by the first quantity in response to the sports player action. The sports player action may include scoring a number of game points, and the first quantity may be based upon the number of game points.
Abstract:
A capacitor (30) compatible with wirebonding processes and a method for manufacturing the capacitor (30). The capacitor (30) includes a first plurality of conductive layers and a second plurality of conductive layers spaced apart by a plurality of dielectric layers. The first plurality of conductive layers is electrically connected to a peripheral contact (74) of the capacitor (30). The second plurality of conductive layers is electrically connected to an interior portion of the capacitor (30). The first plurality of conductive layers is interleaved with the second plurality of conductive layers.
Abstract:
An optical device package (18) includes an optical transmitter die (10) encapsulated within mold material (20). The mold material (20) allows light emitted from the optical transmitter (10) to pass through the package (18) and can have a lens pattern (22) molded therein to focus the light emitted from the optical transmitter. The mold material (20) can also have coupling patterns (32) formed therein to allow a supplemental lens assembly (28) to be coupled thereto so that supplemental lens patterns (30) formed in the supplemental lens assembly (28) can focus the light emitted from the optical transmitter (10). The optical device package (18) can also include an optical receiver (40) enclosed within the mold material (20) and mounted on a substrate (42) with the optical transmitter (10) to provide a complete optical product in one package (18).
Abstract:
An organic electroluminescent device array encapsulating package including an organic electroluminescent device on a supporting substrate. A cover having a rim engaging the supporting substrate is spaced from and hermetically encloses the organic electroluminescent device. A dielectric liquid having benign chemical properties fills the space between the cover and the organic electroluminescent device, providing both an efficient medium for heat transmission and an effective barrier to oxygen and moisture.
Abstract:
A method for manufacturing a liquid-containing microelectronic device package. The method includes steps of providing (32) a base (16) including a microelectronic device (22) and a seal area disposed peripherally about the base (16), providing (34) a lid (12) and providing (34) a sealant (14) disposed between the base (16) and lid (12). The method also includes steps of immersing (36) the base (16), sealant (14) and lid (12) in a liquid (24) having a temperature above a sealant activation temperature and maintaining (38) the base (16), sealant (14) and lid (12) in the liquid (24) for a time sufficient to allow the liquid (24) to enter between the base (16) and lid (12) and to heat and thereby activate the sealant (14). The method further includes removing (40) the base (16), lid (12) and sealant (14) from the liquid (24) to provide a sealed, liquid-containing microelectronic device package (10).
Abstract:
A package assembly (31) has a leadframe (10) including a locating flange (30), an optical transmitter (22) such as a laser diode mounted to the leadframe, and a package (32) enclosing both the optical transmitter and a portion of the leadframe so that the locating flange of the leadframe is disposed outside of the package. The locating flange is used as a reference datum to align the optical transmitter's relative height and lateral position during manufacture. Also, the locating flange is used as a reference datum in mating the package assembly to other, standard optical components when mounting to other components in an optical end product.
Abstract:
A method of making a leadframe useful in packaging semiconductor devices eliminates silver bleed between adjacent leads of the leadframe. This is accomplished by leaving excess leadframe material along the edges of the leads prior to silver plating the flag area and the portion of the leads adjacent to the flag area. After the plating operation, this excess leadframe material is removed thereby leaving silver free leads which will be exposed outside of a resulting encapsulated semiconductor package.
Abstract:
An electronic assembly (10) includes a chip capacitor (11) having two major surfaces (12, 15) and a pair of electrodes (13, 14). A plurality of electrically conductive traces (20-23, 25-28) are formed on one (12) of the major surfaces. Some of the plurality of electrically conductive traces are electrically coupled to a first electrode (14) and some of the plurality of electrically conductive traces are coupled to a second electrode (14) of the pair of electrodes. Electronic circuit elements (16, 17, 18) are coupled to the plurality of electrically conductive traces (20-23, 25-28), thereby forming the electronic assembly (10).
Abstract:
A semiconductor device (10) coupled to ball grid array substrate (11) and encapsulated by an optically transmissive material (29, 31). The ball grid array substrate (11) has conductive interconnects (14) and a semiconductor receiving area (17) on a top surface and solder pads (13) on a bottom surface. An optoelectronic component (24) is mounted on the semiconductor receiving area (17) and encapsulated with the optically transmissive material (29, 31). Solder balls (18) are formed on the solder pads (13).