Abstract:
The present invention relates to a semiconductor photoelectric device including a InAs layer formed to monoatomic thickness sandwiched between spacer layers adjacent to an emitter to maximize a difference in energy between two quantum states in accumulation layer of a resonant tunneling diode having a double barrier structure, resulting in separating the resonant tunneling current determined by two quantum states of the triangular well in accumulation layer of resonant tunneling diode, even when light of a low intensity is irradiated to the surface of the resonant tunneling diode. Thus, there is provided an optical controlled resonant tunneling diode, making it possible to manufacturing a switching device for controlling an electric signal using light source by adjusting, using light, the resonant tunneling determined by an excited state of the triangular well.
Abstract:
A single mode surface emitting laser and its manufacturing method are provided. The surface emitting laser which has a characteristic of single transverse mode radiation in the broad region using reflectivity distribution of a reflector layer with an antiguide clad is provided. The single mode surface emitting laser comprises an n-type semiconductor substrate having an n-type lower electrode and an antireflection film thereunder, a laser pillar formed on the semiconductor substrate, the laser pillar having a bottom DBR, an active layer and a top DBR, a control layer formed on said laser pillar, the control layer consisting of a compound semiconductor of which energy gap is larger than radiation wavelength, an antiguide clad layer covering an outer portion of the laser pillar including the control layer and has higher reflective index than those of the active layer or the top DBR forming the laser pillar, a top electrode formed on the antiguide clad layer and the control layer, and an insulation film between the antiguide clad layer and the top electrode.
Abstract:
An improved parallel optical logic operator provides a path for light to pass through substrates in which a light source and an optical logic device are arranged. An optical logic device operates by transmission of light forwarded to a predetermined direction. This increases integration efficiency of the system by eliminating optical parts for changing the light path. A unit chip includes a laser array for generating a predetermined light in accordance with an electrical signal for a logic process, a laser array substrate on which via holes are formed for passing light, a microlens array for converting the light beam emitted from each laser device of the laser array into a parallel light beam for passing through the via hole, and an optical logic circuit array formed with a combination of an S-SEED which performs a logic function by transmission of the light signal through an optical window in S-SEED. A plurality of unit chips are laminated so that the light emitted from the laser device of one of the unit chips passes through an optical logic circuit of a corresponding unit chip and can be made incident on the optical logic circuit in the next unit chip through a via hole.
Abstract:
The present invention relates to a method of fabricating vertical-cavity surface emitting lasers being watched as a light source for long wavelength communication. The present invention includes forming a layer having a high resistance near the surface by implanting heavy ions such as silicon (Si), so that the minimum current injection diameter is made very smaller unlike implantation of a proton. Further, the present invention includes regrowing crystal so that current can flow the epi surface in parallel to significantly reduce the resistance up to the current injection part formed by silicon (Si) ions. Therefore, the present invention can not only effectively reduce the current injection diameter but also significantly reduce the resistance of a device to reduce generation of a heat. Further, the present invention can further improve dispersion of a heat using InP upon regrowth and thus improve the entire performance of the device.
Abstract:
A method for producing a vertical-cavity surface-emitting laser, includes the steps of: forming a bottom mirror layer, an active layer and a top mirror layer on a semiconductor substrate; forming an antireflection layer on a rear surface of the semiconductor substrate; selectively etching peripheral portions of the antireflection layer to form a first electrode; defining laser emission portions through etching processing; forming a hydrogenated barrier over an entire surface of the resultant structure; forming a post; forming a passivation layer through the hydrogenating of the exposed top mirror layer and the portions of the active layer; forming a planarization film after the partial exposure of the top mirror and forming a second electrode pad to which the exposed top mirror layer contacts.
Abstract:
Disclosed herein is a vertical cavity surface emitting laser device. The laser device comprises a semiconductor lower mirror layer, a first semiconductor electrode layer, a gain-activation layer and a semiconductor anode layer sequentially grown on the compound semiconductor substrate, a re-growth pattern formed on the semiconductor anode layer to a width of 10˜100 μm and an etching depth equal to or less than the semiconductor anode layer by etching, a first anode semiconductor buffer layer grown at a low temperature on the pattern, a second anode semiconductor layer grown at the low temperature for formation of an oxide layer, an anode semiconductor layer for tunnel junction, a cathode semiconductor layer for tunnel junction, a second semiconductor electrode layer for injection of electrons, and an upper mirror layer formed on the second semiconductor electrode layer. With this structure, the laser device comprises an effective electric current confining structure.
Abstract:
Disclosed is a surface-emitting laser device which eliminates an absorption loss of a p-type doped layer and reduces a scattering loss in a mirror layer and a carrier loss due to a current induction, comprising a first conductive type of semiconductor substrate; a bottom mirror layer formed on the semiconductor substrate and composed of a first conductive type of semiconductor layer; an active layer formed on the bottom mirror layer; an electron leakage barrier layer formed on the active layer and having an energy gap larger than the active layer; a current induction layer formed on the electron leakage barrier layer and a second conductive type of semiconductor layer; a current extension layer formed on the current induction layer and composed of the second conductive type of semiconductor layer; and a top mirror layer formed on the current extension layer, wherein the top mirror layer includes undoped center portion and its both end having the second conductive type of dopant diffusion region.
Abstract:
A folded cavity laser for generating a laser beam, includes a substrate provided with a distributed Bragg reflector (DBR); an active medium formed above the DBR for amplifying the laser beam; a first and a second mirrors formed on sides of the active medium, respectively, for making a horizontal cavity and for reflecting the amplified laser beam to the DBR; and a microlens, formed on the substrate opposite the DBR, for making the amplified laser beam astigmatic after passing therethrough.
Abstract:
A method of manufacturing a polarization switching surface-emitting laser in which a laser resonance wavelength depends on changing the polarization of the laser, by changing the refractivity of a compound semiconductor mirror layer of the laser depending on polarizations using an electro-optic effect of compound semiconductor materials such as GsAs and applying an electric field thereto.
Abstract:
A method for fabricating a multi-channel array optical device having uniform spacing between different wavelengths and for having precise wavelengths by accomplishing wavelength adjustment and by the forming of mirror layers simultaneously through a multi-layer binary mask and a selective oxidization process. This method is especially useful for fabricating multi-channel array optical devices including multi-channel passive filters and multi-channel surface emitting laser arrays. The method includes forming a plurality of semiconductor mirror layers on a semiconductor substrate; forming an oxidization protective layer on the plurality of semiconductor mirror layers; selectively removing the oxidization protective layer by using a binary mask to expose the semiconductor mirror layer which will adjust a wavelength; oxidizing the exposed semiconductor mirror layer.