Abstract:
An embodiment of the present invention provides a thin film transistor and a manufacturing method thereof and an array substrate comprising the thin film transistor. The method comprises: depositing an amorphous layer on a substrate, and patterning the amorphous layer so as to form an active layer comprising a source region, a drain region and a channel region; forming a gate insulating layer and a gate electrode above the channel region; depositing an induction metal layer on the substrate on which the gate electrode is formed; doping impurity into the source region and the drain region by an ion implanting process and bombarding part of the induction metal into the source region and the drain region; removing the induction metal layer; performing a thermal treatment to the doped active layer so that the impurity is activated and the metal induced crystallization and the metal induced lateral crystallization occur in the active layer due to the induction metal, converting the amorphous silicon to polysilicon in the source region, the drain region and the channel region of the active layer; and forming a source electrode and a drain electrode.
Abstract:
The invention encompasses methods and devices for diagnosing, theranosing, or prognosing a condition in a patient by enriching a sample in rare cells or other particles. The devices can be a microfluidic device comprising an array of obstacles and one or more binding moieties. The devices and methods can allow for enrichment of cells based on size and affinity, recovery of cells or other particles in locations on the microfluidic device, release of cells or other particles from the microfluidic device, flow of sample through the microfluidic device, and retention of rare cells or other particles from a sample obtained from a patient having a condition.
Abstract:
A portable multi-spectral imaging system and device is disclosed. The system includes at least one image acquisition device for acquiring an image from a subject, a filtering device to filter the light received by the image acquisition device, a processor for processing the image acquired by the image acquisition device, and a display. There is software running on the processor that determines oxygenation values of the subject based on the processed image.
Abstract:
The invention provides methods for processing tissue-derived spectral data for use in a tissue classification algorithm. Methods of the invention comprise application of spectral and/or image masks for automatically separating ambiguous or unclassifiable spectral data from valid spectral data. The invention improves the accuracy of tissue classification, in part, by properly identifying and accounting for spectral data from tissue regions that are affected by an obstruction and/or regions that lie outside a diagnostic zone of interest.
Abstract:
The present application provides a method for fabricating a back channel etching oxide semiconductor TFT substrate, by depositing the first passivation layer on the source, the drain and the active layer, and treating the oxygen element containing plasma to a surface of the first passivation layer, infiltrating traces of oxygen element into the superficial layer of the channel region of the active layer through the first passivation layer, then using an oxygen element containing plasma to treat the surface of the first passivation layer, so that the traces of oxygen element infiltrates into the superficial layer of the channel region of the active layer via the first passivation layer, to supply the oxygen element to the superficial layer of the channel region, and ensure the oxygen element balance in the superficial layer, the first passivation layer acts as a barrier layer to ensure the stability of the TFT.
Abstract:
A manufacturing method of an array substrate of an OLED display device is provided. Active areas of a first thin film transistor T1 and a second thin film transistor T2 are formed by a first mask; channel doping areas, source electrode doping areas and drain electrode doping areas of T1 and T2 are formed by a second mask; gate electrodes of T1 and T2 are formed by a third mask; vias are formed by a fourth mask; source electrodes and drain electrodes of T1 and T2, a data line and a pixel electrode are formed by a fifth mask. The manufacturing method can simplify the process steps.
Abstract:
An anti-diffusion layer, a preparation method thereof, a thin-film transistor (TFT), an array substrate and a display device are provided, involve the display device manufacturing field and can resolve problem that a high atmosphere temperature is need in process of preparing a tantalum dioxide anti-diffusion layer by PVD or CVD, which causes the gate electrode to volatilize and affect the performance of a display device. The method for preparing the anti-diffusion layer comprises: placing a conductive base (1) and a cathode (4) in a tantalum sulfate solution (3), taking the conductive base (1) as an anode, and forming a tantalum dioxide anti-diffusion layer on the conductive base (1) after energizing.
Abstract:
The invention provides methods of determining a correction for a misalignment between at least two images in a sequence of images due at least in part to sample movement. The methods are applied, for example, in the processing and analysis of a sequence of images of biological tissue in a diagnostic procedure. The invention also provides methods of validating the correction for a misalignment between at least two images in a sequence of images of a sample. The methods may be applied in deciding whether a correction for misalignment accurately accounts for sample motion.
Abstract:
An improved ROI segmentation image processing system substantially masks non-ROI image data from a digital image to produce a ROI segmented image for subsequent digital processing. The ROI segmentation image processing system is a computer-based system having a collimation subsystem configured to detect and mask out collimated regions within the image. Furthermore, a direct exposure (DE) subsystem is configured to detect and remove DE regions from the image. Holes generated in the image are filled-in to provide a resulting image with only ROI.
Abstract:
An automated method, storage medium, and system for analyzing bone. Digital image data corresponding to an image of the bone are obtained. Next there is determined, based on the digital images, a measure of bone mineral density (BMD) and at least one of a measure of bone geometry, a Minkowski dimension, and a trabecular orientation. The strength of the bone is estimated based upon the measure of BMD and at least one of the measure of bone geometry, the Minkowski dimension, and the trabecular orientation. To improve bone texture analysis, the present invention also provides a novel automated method, storage medium, and system in which digital image data corresponding to an image of the bone is obtained, and a region of interest (ROI) is selected within the bone. A fractal characteristic of the image data within the ROI using an artificial neural network is extracted. The strength of the bone is estimated based at least in part on the extracted fractal characteristic. To perform bone analysis with an improved measure of bone mineral density, the present invention also provides a novel automated method, storage medium, and system in which digital image data corresponding to an image of the bone is obtained. A measure of normalized bone mineral density (BMD) corresponding to a volumetric bone mineral density of the bone is determined, and the strength of the bone based is estimated based at least in part on the normalized BMD.