摘要:
A light emitting diode is disclosed. The disclosed light emitting diode includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer, active layer, and second-conductivity-type semiconductor layer are disposed to be adjacent to one another in a same direction. The active layer includes well and barrier layers alternately stacked at least one time. The well layer has a narrower energy bandgap than the barrier layer. The light emitting diode also includes a mask layer disposed in the first-conductivity-type semiconductor layer, a first electrode disposed on the first-conductivity-type semiconductor layer, and a second electrode disposed on the second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer is formed with at least one recess portion.
摘要:
A light emitting device is disclosed. The light emitting device includes a first-conductive-type semiconductor layer, a second-conductive-type semiconductor layer, and an active layer interposed between the first-conductive-type semiconductor layer and the second-conductive-type semiconductor layer. The second-conductive-type semiconductor layer includes an electron blocking region closely disposed to the active layer and having a pattern with a plurality of elements spaced apart from each other.
摘要:
Provided is a catalyst converter for purifying exhaust gas and a method for manufacturing the catalyst converter, in which a heater is disposed between inner/outer monoliths, to thereby heighten a heat transfer efficiency and induce a uniform catalytic reaction, and to thereby enhance a processing performance, and minimize an electric power consumption and miniaturize a device. The catalyst converter includes: a heater having a winding portion which is wound so as to have a space therein and a pair of electric power terminals; inner and outer monoliths which are inserted in the inner and outer circumferential portions of the heater winding portion wherein each of the inner and outer monoliths includes a number of hollow cells on the surfaces of which catalysts have been coated and which are formed in the lengthy direction; and a housing in which a support assembly is assembled.
摘要:
Provided is a drying heater, a heating unit for drying laundry using the same, a drying control system and control method thereof that reduces electric power consumption of the drying heater to supply high temperature dry air to the inside of a drum in a washing machine or a laundry drying machine, to thus simplify structure of the drying heater and reduce a manufacturing cost. The drying control method includes the step of applying a first electric power from a first drive power supply to a drying heater when a drum internal temperature is lower than a preset temperature, and applying a second electric power from a second drive power supply which is relatively smaller than the first electric power to the drying heater when the drum internal temperature is higher than the preset temperature. The drying heater includes a surface-shaped heat generation member made of a low thermal density strip style metal thin plate.
摘要:
Provided is a pipe having an anti-freezing function including a strip type surface heating element which is capable of having a function of preventing the pipe from freezing and bursting, and a fabricating method thereof, in which the pipe is a relatively thin film and includes a surface heating element therein. The anti-freezing pipe includes: a ribbon heater which has a strip type surface heating element which emits heat when electric power is applied to both ends of at least one strip, and the strips are arranged with an interval in parallel with each other when the strip type surface heating element is formed with a number of strips, and an insulation layer which is coated on the outer circumference of the strip type surface heating element in a plate form, and which is spirally wound to form a cylindrical shape; and a spiral junction portion which pins side surfaces of the spirally wound ribbon heater.
摘要:
Provided is a catalyst converter for purifying exhaust gas and a method for manufacturing the catalyst converter, in which a heater is disposed between inner/outer monoliths, to thereby heighten a heat transfer efficiency and induce a uniform catalytic reaction, and to thereby enhance a processing performance, and minimize an electric power consumption and miniaturize a device. The catalyst converter includes: a heater having a winding portion which is wound so as to have a space therein and a pair of electric power terminals; inner and outer monoliths which are inserted in the inner and outer circumferential portions of the heater winding portion wherein each of the inner and outer monoliths includes a number of hollow cells on the surfaces of which catalysts have been coated and which are formed in the lengthy direction; and a housing in which a support assembly is assembled.
摘要:
Provided is a surface heater using a strip type surface heating element and a fabricating method thereof, in which the surface heater can be embodied into a thin film form using a metallic surface heating element which has a specific resistance value appropriate as a heat wire and is formed of a strip style, where the strip type surface heating element can be sequentially produced at an inexpensive cost. The surface heater includes: the strip type surface heating element in which a number of strips which are obtained by slitting a metallic thin film are arranged with an interval in parallel with each other and both ends of each adjacent strip are connected with each other; and an insulation layer which is coated on the outer circumference of the strip type surface heating element in a plate form.
摘要:
A light emitting device includes a first conductive semiconductor layer (112), an active layer (114) including a quantum well (114w) and a quantum barrier (114b) on the first conductive semiconductor layer (112). An undoped last barrier layer (127) is provided on the active layer (114), and an AlxInyGa(1-x-y)N (0≦x≦1, 0≦y≦1)-based layer (128) is provided on the undoped last barrier layer (127). A second conductive semiconductor layer (116) is provided on the AlxInyGa(1-x-y)N-based layer (128).
摘要翻译:发光器件包括第一导电半导体层(112),在第一导电半导体层(112)上包括量子阱(114w)和量子势垒(114b)的有源层(114)。 在有源层(114)上提供未掺杂的最后阻挡层(127),并且在所述有源层上提供Al x In y Ga(1-xy)N(0和n 1E; x和n 1E; 1,0& 未掺杂的最后阻挡层(127)。 在Al x In y Ga(1-x-y)N基层(128)上设置第二导电半导体层(116)。
摘要:
Provided is a defrost heater using a surface heat emission element of a metal thin film having a fast temperature response performance and a low thermal density, to thereby use an environment-friendly refrigerant, and that performs quick temperature rising and cooling during performing a defrost cycle, to thereby quickly restart a refrigeration cycle and thus greatly reduce time required for the defrost cycle, and a fabricating method thereof, and a defrost apparatus using the same. The defrost heater includes: a strip type surface heat emission element made of a strip type metal thin plate; an insulation layer that coats the outer circumference of the strip type surface heat emission element; and a heat transfer board on one side surface of which the surface heat emission element on the outer circumferential surface of which the insulation layer has been coated is installed, and that contacts evaporator fins so that heat generated from the surface heat emission element is transferred to an evaporator.
摘要:
A light emitting diode is disclosed. The disclosed light emitting diode includes a light emitting structure including a first-conductivity-type semiconductor layer, an active layer, and a second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer, active layer, and second-conductivity-type semiconductor layer are disposed to be adjacent to one another in a same direction. The active layer includes well and barrier layers alternately stacked at least one time. The well layer has a narrower energy bandgap than the barrier layer. The light emitting diode also includes a mask layer disposed in the first-conductivity-type semiconductor layer, a first electrode disposed on the first-conductivity-type semiconductor layer, and a second electrode disposed on the second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer is formed with at least one recess portion.