摘要:
A NAND-type flash memory device and method for programming the NAND-type flash memory device are provided. The method may include applying a voltage of 0 V to an unselected string select line, applying the voltage of 0 V to a selected bit line, applying a supply voltage to a selected string select line, and applying a dummy pass voltage to a dummy word line, the dummy pass voltage being in a range between 0 V to a pass voltage. The method may further include applying the supply voltage to an unselected bit line, applying the pass voltage to a selected word line, applying the pass voltage to an unselected word line; and applying a program voltage to the selected word line.
摘要:
The present invention discloses a charge trap flash memory cell with multi-doped layers at the active region, a memory array using of the memory cell, and an operating method of the same. The charge trap memory cell structure of the present invention is characterized by forming multi-doped layers at the active region appropriately, and it is a difference from the conventional art. The present invention induces electrons to band-to-band tunnel at the PN junction with the source/drain region by the multi-doped layers, and accelerates the electrons at the reverse bias to generate an avalanche phenomenon. Therefore, the method for operating a memory array of the present invention comprises programming by injecting holes which are generated by the avalanche phenomenon into multi-dielectric layers of each memory cells, and erasing by injecting electrons through an F-N tunneling from channels into the multi-dielectric layers of each memory cells.
摘要:
Provided is a method of operating a nonvolatile memory device to perform an erase operation. The method includes applying a composite pulse including a direct current (DC) pulse and a DC perturbation pulse to the nonvolatile memory device to perform the erase operation.
摘要:
Nonvolatile memory devices including device isolation patterns on a semiconductor substrate are provided. The device isolation patterns define a cell active region and a peripheral active region of the semiconductor substrate. Cell gate electrodes are provided that cross over the cell active regions. Memory cell patterns are provided between the cell gate electrodes and the cell active regions and extend toward the device isolation patterns. A tunnel insulation film is provided between the memory cell pattern and the cell active region. Related methods of fabricating nonvolatile memory devices are also provided herein.
摘要:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.
摘要:
Operation methods of charge-trap flash memory devices having an unused memory cell for data storage and a normal memory cell used for data storage are discussed. The operation method may include selecting the unused memory cell, and programming the unused memory cell to have a predetermined threshold voltage. The charge-trap flash memory device may thus be provided with improved reliability by interrupting erasure stress to unused memory cells.
摘要:
Nonvolatile memory devices include a first NAND-type string of EEPROM cells having a first plurality of string selection transistors therein electrically connected in series within the string. This first plurality of string selection transistors includes a first plurality of depletion-mode transistors and a first enhancement-mode transistor. A second NAND-type string of EEPROM cells is also provided with a second plurality of string selection transistors therein that are electrically connected in series. The second plurality of string selection transistors includes a second plurality of depletion-mode transistors and a second enhancement-mode transistor. According to these embodiments of the invention, the first enhancement-mode transistor is stacked vertically relative to one of the second plurality of depletion-mode transistors and the second enhancement-mode transistor is stacked vertically relative to one of the first plurality of depletion-mode transistors. A first string selection plug is configured to electrically connect a gate electrode of the first enhancement-mode transistor to a gate electrode of one of the second plurality of depletion-mode transistors. Similarly, a second string selection plug is configured to electrically connect a gate electrode of the second enhancement-mode transistor to a gate electrode of one of the first plurality of depletion-mode transistors.
摘要:
Provided is a method of operating a nonvolatile memory device to perform an erase operation. The method includes applying a composite pulse including a direct current (DC) pulse and a DC perturbation pulse to the nonvolatile memory device to perform the erase operation.
摘要:
Methods of forming a non-volatile memory device may include forming a tunnel insulating layer on a semiconductor substrate and forming a charge-trap layer on the tunnel insulating layer. A trench may then be formed extending through the tunnel insulating layer and the charge-trap layer and into the semiconductor substrate so that portions of the charge-trap layer and the tunnel insulating layers remain on opposite sides of the trench. A device isolation layer may be formed in the trench, and a blocking insulating layer may be formed on the device isolation layer and on remaining portions of the charge-trap layer. A gate electrode may be formed on the blocking insulating layer, and the blocking insulating layer and remaining portions of the charge-trap layer may be patterned to provide a blocking insulating pattern and a charge-trap pattern between the gate electrode and the semiconductor substrate.
摘要:
Methods of forming a non-volatile memory device may include forming a tunnel insulating layer on a semiconductor substrate and forming a charge-trap layer on the tunnel insulating layer. A trench may then be formed extending through the tunnel insulating layer and the charge-trap layer and into the semiconductor substrate so that portions of the charge-trap layer and the tunnel insulating layers remain on opposite sides of the trench. A device isolation layer may be formed in the trench, and a blocking insulating layer may be formed on the device isolation layer and on remaining portions of the charge-trap layer. A gate electrode may be formed on the blocking insulating layer, and the blocking insulating layer and remaining portions of the charge-trap layer may be patterned to provide a blocking insulating pattern and a charge-trap pattern between the gate electrode and the semiconductor substrate. Related structures are also discussed.