Abstract:
Disclosed herein is an interposer-embedded printed circuit board, including: a substrate including a cavity formed in one side thereof and having a predetermined height in a thickness direction of the substrate; an interposer disposed in the cavity and including a wiring region and an insulating region; and a circuit layer formed in the substrate and including a connection pattern connected with one side of the wiring region. The interposer-embedded printed circuit board is advantageous in that an interposer is embedded in a substrate, so that the thickness of a semiconductor package can be reduced, thereby keeping up with the trend of slimming the semiconductor package.
Abstract:
A semiconductor device and a method of forming a metal line of a semiconductor device includes a first insulating layer formed over a semiconductor substrate an etch-stop layer formed over the first insulating layer, contact holes formed by etching the etch-stop layer and the first insulating layer, Contact plugs formed within the contact holes and a second insulating layer formed over the contact plugs and the etch-stop layer. The second insulating layer is etched in order to form trenches through which the contact plugs are exposed. Metal lines are formed within the trenches. Accordingly, since a hard mask with a high dielectric constant does not remain between the metal lines, the capacitance of the metal lines can be reduced.
Abstract:
A method of manufacturing a nonvolatile memory device includes forming a tunnel insulating layer over a semiconductor substrate, forming a charge trap layer, including first impurity ions of a first concentration, over the tunnel insulating layer, forming a compensation layer, including second impurity ions of a second concentration, over the charge trap layer, diffusing the second impurity ions within the compensation layer toward the charge trap layer, removing the compensation layer, forming a dielectric layer on surfaces of the charge trap layer, and forming a conductive layer for a control gate on the dielectric layer.
Abstract:
A method of manufacturing a stacked wafer level package includes: preparing a substrate; forming a conductive layer on the substrate; forming chip connection pads and internal connection pads on the conductive layer; forming solder balls connected to the internal connection pads; mounting a semiconductor chip on the conductive layer to be connected to the chip connection pads; forming a sealing member to seal the solder balls and the semiconductor chip; separating the substrate from the conductive layer; forming a rearrangement wiring layer by etching the conductive layer; forming an external connection on the rearrangement wiring layer; forming contact holes in the sealing member to expose the solder balls; and stacking an electronic component to be electrically connected to the solder balls exposed through the contact holes.
Abstract:
The present invention relates to a semiconductor stack package including: a printed circuit board; a first semiconductor chip mounted on the printed circuit board; a second semiconductor chip mounted on the printed circuit board in parallel with the first semiconductor chip; a first rearrangement wiring layer positioned on the first semiconductor chip; a second rearrangement wiring layer which constitutes one circuit together with the first rearrangement wiring layer and is positioned on the second semiconductor chip; and a third semiconductor chip which is electrically connected to the first and second rearrangement wiring layers and of which both ends are separately positioned on the first and second semiconductor chips.
Abstract:
A semiconductor device and a method of forming a metal line of a semiconductor device includes a first insulating layer formed over a semiconductor substrate an etch-stop layer formed over the first insulating layer, contact holes formed by etching the etch-stop layer and the first insulating layer, Contact plugs formed within the contact holes and a second insulating layer formed over the contact plugs and the etch-stop layer. The second insulating layer is etched in order to form trenches through which the contact plugs are exposed. Metal lines are formed within the trenches. Accordingly, since a hard mask with a high dielectric constant does not remain between the metal lines, the capacitance of the metal lines can be reduced.
Abstract:
The present invention relates to a method for fabricating a ferroelectric random access memory (FeRAM) device. The method includes the steps of: forming a first inter-layer insulation layer on a substrate; forming a storage node contact connected with a partial portion of the substrate by passing through the first inter-layer insulation layer; forming a lower electrode connected to the storage node contact on the first inter-layer insulation layer; forming a second inter-layer insulation layer having a surface level lower than that of the lower electrode so that the second inter-layer insulation layer encompasses a bottom part of the lower electrode; forming an impurity diffusion barrier layer encompassing an upper part of the lower electrode on the second inter-layer insulation layer; forming a ferroelectric layer on the lower electrode and the impurity diffusion barrier layer; and forming a top electrode on the ferroelectric layer.
Abstract:
A method of manufacturing a nonvolatile memory device includes forming a tunnel insulating layer over a semiconductor substrate, forming a charge trap layer, including first impurity ions of a first concentration, over the tunnel insulating layer, forming a compensation layer, including second impurity ions of a second concentration, over the charge trap layer, diffusing the second impurity ions within the compensation layer toward the charge trap layer, removing the compensation layer, forming a dielectric layer on surfaces of the charge trap layer, and forming a conductive layer for a control gate on the dielectric layer.
Abstract:
A semiconductor device and a method of forming a metal line of a semiconductor device includes a first insulating layer formed over a semiconductor substrate an etch-stop layer formed over the first insulating layer, contact holes formed by etching the etch-stop layer and the first insulating layer, Contact plugs formed within the contact holes and a second insulating layer formed over the contact plugs and the etch-stop layer. The second insulating layer is etched in order to form trenches through which the contact plugs are exposed. Metal lines are formed within the trenches. Accordingly, since a hard mask with a high dielectric constant does not remain between the metal lines, the capacitance of the metal lines can be reduced.
Abstract:
A semiconductor chip package and a printed circuit board having an embedded semiconductor chip package are disclosed. The semiconductor chip package may include a semiconductor chip that has at least one chip pad formed on one side, and a capacitor formed on the other side of the semiconductor chip.