摘要:
A semiconductor device having, on a silicon substrate, a gate insulating film and a gate electrode in this order; wherein the gate insulating film comprises a nitrogen containing high-dielectric-constant insulating film which has a structure in which nitrogen is introduced into metal oxide or metal silicate; and the nitrogen concentration in the nitrogen containing high-dielectric-constant insulating film has a distribution in the direction of the film thickness; and a position at which the nitrogen concentration in the nitrogen containing high-dielectric-constant insulating film reaches the maximum in the direction of the film thickness is present in a region at a distance from the silicon substrate. A method of manufacturing a semiconductor device including introducing nitrogen by irradiating the high-dielectric-constant insulating film which is made of metal oxide or metal silicate, with a nitrogen containing plasma, is also provided.
摘要:
A formation method of a metallic compound layer includes preparing, in a chamber, a substrate having a surface on which a semiconductor material of silicon, germanium, or silicon germanium is exposed, and forming a metallic compound layer, includes: supplying a raw material gas containing a metal for forming a metallic compound with the semiconductor material to the chamber; heating the substrate to a temperature at which the raw material gas is pyrolyzed; and forming a metallic compound layer by reaction of the metal with the semiconductor material so that no layer of the metal is deposited on the substrate. A manufacturing method of a semiconductor device employs this formation method of a metallic compound layer.
摘要:
A second mask is provided so as to cover a second gate pattern and a first gate pattern is heated to a temperature at which a material gas containing a first metal thermally decomposes, polysilicon constituting the first gate pattern is reacted with the first metal for silicidation under the conditions that the layer of the first metal does not deposit, and thus the first gate pattern is turned into a first gate electrode constituted by a silicide of the first metal. After the second mask is removed, a first mask is provided so as to cover the first electrode and the second gate pattern is heated to a temperature at which the material gas thermally decomposes, polysilicon constituting the second gate pattern is reacted with the first metal for silicidation under the conditions that the layer of the first metal does not deposit, and thus the second gate pattern is turned into a second gate electrode constituted by the silicide of the first metal. Then, the first mask is removed. With such a manufacturing method, a silicide layer is formed without adding an annealing process.
摘要:
A semiconductor device has an MIS (metal-insulating film-semiconductor) structure, and a film mainly containing Al, O, and N atoms is used on a semiconductor. Alternatively, a semiconductor device has an MIS structure, and a film mainly containing Al, O, and N atoms is provided as a gate insulating film on a channel region between a source and a drain. Characteristics required of a gate insulating film of a 0.05 μm-gate-length-generation semiconductor transistor are satisfied. In particular, no fixed charge is included in the film, and impurity diffusion is reduced.
摘要:
A semiconductor device has a substrate; and an N-channel MIS transistor and a P-channel MIS transistor provided on the same substrate; each of the N-channel MIS transistor and the P-channel MIS transistor having a Hf-containing, high-k gate insulating film, and a gate electrode provided over the high-k gate insulating film, the N-channel MIS transistor having a silicon oxide film or a silicon oxynitride film, which contains a first work function adjusting element, provided between the substrate and the high-k gate insulating film, and, the P-channel MIS transistor having a silicon oxide film or a silicon oxynitride film, which contains the first work function adjusting element same as that contained in the N-channel MIS transistor, provided between the high-k gate insulating film and the gate electrode.
摘要:
A semiconductor device includes a silicon substrate; a P channel type field effect transistor including a first gate insulating film on the substrate, a first gate electrode on the first gate insulating film and a first source/drain region; and an N channel type field effect transistor including a second gate insulating film on the substrate, a second gate electrode on the second gate insulating film and a second source/drain region. The entire first gate electrode is made of a metal silicide, and at least in an upper portion including the upper surface of the second gate electrode, a silicide region of the same kind as the metal (M) is provided. The metal concentration in the silicide region is lower than that in the silicide of the first gate electrode. In an upper portion including the upper surface of the second gate electrode, there is a barrier layer region containing a metal diffusion suppressing element at a concentration higher than that in the lower portion.
摘要:
A semiconductor device includes a silicon substrate; a P channel type field effect transistor including a first gate insulating film on the substrate, a first gate electrode on the first gate insulating film and a first source/drain region; and an N channel type field effect transistor including a second gate insulating film on the substrate, a second gate electrode on the second gate insulating film and a second source/drain region. The entire first gate electrode is made of a metal silicide, and at least in an upper portion including the upper surface of the second gate electrode, a silicide region of the same kind as the metal (M) is provided. The metal concentration in the silicide region is lower than that in the silicide of the first gate electrode. In an upper portion including the upper surface of the second gate electrode, there is a barrier layer region containing a metal diffusion suppressing element at a concentration higher than that in the lower portion.
摘要:
A semiconductor device has an MIS (metal-insulating film-semiconductor) structure, and a film mainly containing Al, O, and N atoms is used on a semiconductor. Alternatively, a semiconductor device has an MIS structure, and a film mainly containing Al, O, and N atoms is provided as a gate insulating film on a channel region between a source and a drain. Characteristics required of a gate insulating film of a 0.05 μm-gate-length-generation semiconductor transistor are satisfied. In particular, no fixed charge is included in the film, and impurity diffusion is reduced.
摘要:
There is provided a semiconductor device which is capable of solving a problem of threshold control in CMOS transistor, accompanied with combination of a gate insulating film having a high dielectric constant and a metal gate electrode, and significantly enhancing performances without deterioration in reliability of a device. The semiconductor device includes a gate insulating film composed of a material having a high dielectric constant, and a gate electrode. A portion of the gate electrode making contact with the gate insulating film has a composition including silicide of metal M expressed with MxSi1-X (0 0.5) in a p-type MOSFET, and is equal to or smaller than 0.5 (X≦0.5) in a n-type MOSFET.
摘要:
A semiconductor device is prepared using an insulating film consisting of a tantalum-tungsten oxide crystal film, a tantalum-molybdenum oxide crystal film, or a laminated film where a silicon oxide, silicon oxynitride or silicon nitride film is laminated on the crystal film. The tantalum-tungsten oxide film is deposited on a substrate under an atmosphere of a mixture of the first material gas comprising tantalum, the second material gas comprising tungsten and an oxidizing agent. For improving a dielectric constant of the tantalum-tungsten or tantalum-molybdenum oxide crystal film, on a Ru substrate with (001) orientation is deposited a oxide crystal film, which is then heated in N2O plasma and subject to rapid thermal nitriding.