摘要:
Methods, reagents, kits and systems are disclosed for determining an analyte in a sample suspected of containing the analyte where all reagents are soluble in aqueous solution. One assay method includes treating a sample suspected of containing the analyte under conditions such that if the analyte is present, an activator is brought into reactive configuration with a chemiluminescent compound to activates it. The sample is also treated with an agent to reduce signal not related to analyte. Finally, the sample is treated with a trigger solution thereby producing light from the activated chemiluminescent compound. No reagents are associated with a surface or other solid phase.
摘要:
Methods for generating chemiluminescence rapidly by reaction of at least one compound comprising a C—C double bond substituted at one carbon with two sulfur atom-containing groups with a peroxidase enzyme and a peroxide are disclosed. The chemiluminescence thus produced can be used as a detectable signal in assays for peroxidase enzymes or peroxide-producing enzymes and in assays employing enzyme-labeled specific binding pairs. Use of the methods provides rapid signal generation, achieving a plateau intensity in under one minute. The substrate can be provided in a composition which demonstrates unexpectedly long storage stability.
摘要:
Novel compounds comprising a C—C double bond substituted at one carbon with two sulfur atom-containing groups are disclosed. The compounds are useful in methods and compositions for generating chemiluminescence rapidly by reaction with a peroxidase enzyme and a peroxide. The chemiluminescence thus produced can be used as a detectable signal in assays for peroxidase enzymes or peroxide-producing enzymes and in assays employing enzyme-labeled specific binding pairs.
摘要:
Methods of producing fluorescence from fluorogenic substrates reactive with a peroxidase enzyme are disclosed. Use of the methods in assays for peroxidase enzymes, peroxidase-labeled analytes are provided. Fluorogenic compounds, compositions and kits for reaction with peroxidase enzymes are described. Two modes of producing fluorescent compounds are described.
摘要:
Improved assay methods utilizing stable, enzymatically triggered chemiluminescent 1,2-dioxetanes with improved water solubility are provided. Assays are performed by a capsule chemistry analytical assay method wherein fluid capsules comprising discrete aqueous segments containing either a chemiluminescent dioxetane reagent or an activating agent separated by an oil-based isolating fluid are flowed through a conduit, and subsequently reacted to produce light.The improvement comprises using a dioxetane substituted with two or more water-solubilizing groups disposed on the dioxetane structure to provide the chemiluminescence. Compositions comprising such a dioxetane, a non-polymeric surfactant enhancer and optionally a fluorescer, provide enhanced chemiluminescence and eliminate the problem of reagent carryover when used in assays performed on capsule chemistry analytical systems.
摘要:
Methods for generating chemiluminescence rapidly by reaction of at least one compound comprising a C—C double bond substituted at one carbon with two sulfur atom-containing groups with a peroxidase enzyme and a peroxide are disclosed. The chemiluminescence thus produced can be used as a detectable signal in assays for peroxidase enzymes or peroxide-producing enzymes and in assays employing enzyme-labeled specific binding pairs. Use of the methods provides rapid signal generation, achieving a plateau intensity in under one minute. The substrate can be provided in a composition which demonstrates unexpectedly long storage stability.
摘要:
Methods and materials are disclosed for rapid and simple extraction and isolation of nucleic acids, particularly RNA, from a biological sample involving the use of an alkaline reagent followed by an acidic solution and a solid phase binding material that has the ability to liberate nucleic acids from biological samples, including whole blood, without first performing any preliminary lysis to disrupt cells or viruses. No detergents or chaotropic substances for lysing cells or viruses are needed or used. Viral, bacterial and mammalian genomic RNA can be obtained using the method of the invention. RNA obtained by the present method is suitable for use in downstream processes such as RT-PCR.
摘要:
Solid phase materials for binding nucleic acids and methods of their use are disclosed. The materials feature a cleavable linker portion which can be cleaved to release bound nucleic acids. The solid phase materials comprise a solid support portion comprising a matrix selected from silica, glass, insoluble synthetic polymers, and insoluble polysaccharides to which is attached a nucleic acid binding portion for attracting and binding nucleic acids, the nucleic acid binding portion (NAB) being linked by a cleavable linker portion to the solid support portion. Preferred nucleic acid binding portions comprise a ternary or quaternary onium group. The materials can be in the form of microparticles, fibers, beads, membranes, test tubes or microwells and can further comprise a magnetic core portion. Methods of binding nucleic acids using the cleavable solid supports are disclosed as are their use in methods of isolating or purifying nucleic acids.
摘要:
Stable, enzymatically triggered chemiluminescent 1,2-dioxetanes with improved water solubility are provided. Dioxetanes further instituted with two or more water-solubilizing groups disposed on the dioxetane structure provide superior performance by eliminating the problem of reagent carryover when used in assays performed on capsule chemistry analytical systems. Compositions comprising a dioxetane with two or more water-solubilizing groups, a non-polymeric cationic surfactant enhancer and optionally a fluorescer, for providing enhanced chemiluminescence are also provided.
摘要:
Methods, reagents, kits and systems are disclosed for determining an analyte in a sample suspected of containing the analyte where all reagents are soluble in aqueous solution. One assay method includes treating a sample suspected of containing the analyte under conditions such that if the analyte is present, an activator is brought into reactive configuration with a chemiluminescent compound to activates it. The sample is also treated with an agent to reduce signal not related to analyte. Finally, the sample is treated with a trigger solution thereby producing light from the activated chemiluminescent compound. No reagents are associated with a surface or other solid phase.