摘要:
The present inventors have observed that in some applications of reactive composite joining there is escape of a portion of the molten joining material through the edges of the joining regions. Such escape is not only a waste of expensive material (e.g. gold or indium) but also a reduction from the optimal thickness of the joining regions. In some applications, such escape also presents risk of short circuits or even fire. In this invention, two approaches are taken toward preventing damage to surroundings by the escape of molten joining material. First, escape may be prevented by trapping or containing the molten material near the joint, using barriers, dams, or similar means. Second, escape may be reduced by adjusting parameters within the joint, such as solder composition, joining pressure, or RCM thickness.
摘要:
In accordance with the invention, a first body is joined to a second body by joining a first amorphous braze layer to a surface of the first body and joining a second amorphous braze layer to a surface of the second body. A reactive multilayer foil is then disposed between the first and second amorphous braze layers. The layers are pressed together and the foil is ignited. Since the bodies can be joined to the braze layers by processes that do not require a furnace and the braze-coated bodies can be joined by the foil without a furnace, the method can produce strong brazed joints in typical workshop and field environments. Preferably the amorphous braze is a bulk metallic glass.
摘要:
Embodiments of the invention include a method for sealing a container. The method includes, providing at least two components of the container, positioning a crushable material between the at least two components, positioning a reactive multilayer material between the at least two components, deforming the crushable material so as to form a seal between the at least two components, chemically transforming the reactive multilayer material so as to join the at least two components.
摘要:
In accordance with the invention, a fuse comprises a reactive composite structure to interrupt the flow of current in a circuit. The term fuse, as used herein, is intended to cover current interrupters generically and thus encompasses fuses, circuit breakers and other devices for interrupting the flow of current through a conductor. Reactive composite structures comprise two or more phases of materials spaced in a controlled fashion throughout a composite in uniform layers, local layers, islands, or particles. Upon appropriate excitation, the materials undergo an exothermic chemical reaction that spreads rapidly through the composite structure generating heat and light. Moreover a reactive composite structure can break apart upon reaction. This breakage can rapidly interrupt the flow of current through the reactive composite structure. Such structures can provide high-speed current interruption. In addition, reactive composite structures can have abrupt reaction initiation thresholds such that a pulse of energy of a certain magnitude may initiate a clearing reaction but a slightly smaller pulse of energy may not. Such a reactive composite structure can thus provide a high speed, highly sensitive current interrupter.
摘要:
A multilayer structure has a selectable, (i) propagating reaction front velocity V, (ii) reaction initiation temperature attained by application of external energy and (iii) amount of energy delivered by a reaction of alternating unreacted layers of the multilayer structure. Because V is selectable and controllable, a variety of different applications for the multilayer structures are possible, including but not limited to their use as ignitors, in joining applications, in fabrication of new materials, as smart materials and in medical applications and devices. The multilayer structure has a period D, and an energy release rate constant K. Two or more alternating unreacted layers are made of different materials and separated by reacted zones. The period D is equal to a sum of the widths of each single alternating reaction layer of a particular material, and also includes a sum of reacted zone widths, t.sub.i, in the period D. The multilayer structure has a selectable propagating reaction front velocity V, whereV=K(1/D.sup.n).times.[1-(t.sub.i /D)]and n is about 0.8 to 1.2.
摘要:
Embodiments of the invention include a method for sealing a container. The method includes, providing at least two components of the container, positioning a crushable material between the at least two components, positioning a reactive multilayer material between the at least two components, deforming the crushable material so as to form a seal between the at least two components, chemically transforming the reactive multilayer material so as to join the at least two components.
摘要:
The invention includes a method of joining two components. The method includes providing at least two components to be joined, a reactive multilayer foil, and a compliant element, placing the reactive multilayer foil between the at least two components, applying pressure on the two components in contact with the reactive multilayer foil via a compliant element, and initiating a chemical transformation of the reactive multilayer foil so as to physically join the at least two components. The invention also includes two components joined using the aforementioned method.
摘要:
An embodiment of the invention includes a method of simulating a behavior of an energy distribution within a soldered or brazed assembly to predict various physical parameters of the assembly. The assembly typically includes a reactive multilayer material. The method comprises the steps of providing an energy evolution equation having an energy source term associated with a self-propagating reaction that originates within the reactive multilayer material. The method also includes the steps of discretizing the energy evolution equation, and determining the behavior of the energy distribution in the assembly by integrating the discretized energy evolution equation using other parameters associated with the assembly.
摘要:
A process and apparatus for the reactive multilayer joining of components utilizing metallization techniques to bond difficult-to-wet materials and temperature sensitive materials to produce joined products.
摘要:
In accordance with the invention, bodies of materials are joined by disposing between them a reactive multilayer foil and one or more layers of meltable joining material such as braze or solder. The bodies are pressed together against the foil and joining material, and the foil is ignited to melt the joining material. The pressing is near the critical pressure and typically produces a joint having a strength of at least 70-85% the maximum strength producible at practical maximum pressures. Thus for example, reactively formed stainless steel soldered joints that were heretofore made at an applied pressure of about 100 MPa can be made with substantially the same strength at a critical applied pressure of about 10 kPa. Advantages of the process include minimization of braze or solder extrusion and reduced equipment and processing costs, especially in the joining of large bodies.