摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
摘要:
In accordance with the invention, a first body is joined to a second body by joining a first amorphous braze layer to a surface of the first body and joining a second amorphous braze layer to a surface of the second body. A reactive multilayer foil is then disposed between the first and second amorphous braze layers. The layers are pressed together and the foil is ignited. Since the bodies can be joined to the braze layers by processes that do not require a furnace and the braze-coated bodies can be joined by the foil without a furnace, the method can produce strong brazed joints in typical workshop and field environments. Preferably the amorphous braze is a bulk metallic glass.
摘要:
In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (XaNibCuc)100-d-eYdAlc, wherein the sum of a, b and c equals 100, wherein 40≦a≦80, 0≦b≦35, 0≦c≦40, 4≦d≦30, and 0≦e≦20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.
摘要翻译:根据本发明的优选实施例,提供由具有结晶金属颗粒的微结构的块状金属玻璃基体形成的合金或其它复合材料。 该合金优选具有下式的组成:(X a,a,b,c)C 1 -C 10 - 其中a,b和c的和等于100,其中40 <= a <= 80,0 <= b <= 35,0 <= c < 40,4 <= d <= 30,0 <= e <= 20,其中优选X由早期过渡金属组成,优选Y由难熔体心立方早期过渡金属组成。 本发明的优选实施方案还提供了一种在环境温度下由两相或更多相组成的合金的制造方法。 该方法包括以下步骤:提供由至少两种元素组成的亚稳态结晶相,将亚稳结晶相与至少一种附加元素一起加热以形成液体,浇铸液体,冷却液体以形成合金。 根据本发明的优选实施方案,可以控制液体的组成和冷却速率以确定结晶相的体积分数并分别确定结晶颗粒的尺寸。
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining lawyers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g. air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt or soften the joining material, which upon cooling will form a strong bond, joining two or more bulk materials. If no joining material is used, the foil reaction supplies heat directly to at least two bulk materials, melting or softening a portion of each bulk, which upon cooling, form a strong bond. Additionally, the foil may be designed with openings that allow extrusion of the joining (or bulk) material through the foil to enhance bonding.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.