摘要:
The present inventors have observed that in some applications of reactive composite joining there is escape of a portion of the molten joining material through the edges of the joining regions. Such escape is not only a waste of expensive material (e.g. gold or indium) but also a reduction from the optimal thickness of the joining regions. In some applications, such escape also presents risk of short circuits or even fire. In this invention, two approaches are taken toward preventing damage to surroundings by the escape of molten joining material. First, escape may be prevented by trapping or containing the molten material near the joint, using barriers, dams, or similar means. Second, escape may be reduced by adjusting parameters within the joint, such as solder composition, joining pressure, or RCM thickness.
摘要:
Embodiments of the invention include a method for sealing a container. The method includes, providing at least two components of the container, positioning a crushable material between the at least two components, positioning a reactive multilayer material between the at least two components, deforming the crushable material so as to form a seal between the at least two components, chemically transforming the reactive multilayer material so as to join the at least two components.
摘要:
Some embodiments provide a waste heat recovery apparatus including an exhaust tube having a cylindrical outer shell configured to contain a flow of exhaust fluid; a first heat exchanger extending through a first region of the exhaust tube, the first heat exchanger in thermal communication with the cylindrical outer shell; a second region of the exhaust tube extending through the exhaust tube, the second region having a low exhaust fluid pressure drop; an exhaust valve operatively disposed within the second region and configured to allow exhaust fluid to flow through the second region only when a flow rate of the exhaust fluid becomes great enough to result in back pressure beyond an allowable limit; and a plurality of thermoelectric elements in thermal communication with an outer surface of the outer shell.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt or soften the joining material, which upon cooling will form a strong bond, joining two or more bulk materials. If no joining material is used, the foil reaction supplies heat directly to at least two bulk materials, melting or softening a portion of each bulk, which upon cooling, form a strong bond. Additionally, the foil may be designed with openings that allow extrusion of the joining (or bulk) material through the foil to enhance bonding.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
摘要:
Some embodiments provide a waste heat recovery apparatus including an exhaust tube having a cylindrical outer shell configured to contain a flow of exhaust fluid; a first heat exchanger extending through a first region of the exhaust tube, the first heat exchanger in thermal communication with the cylindrical outer shell; a second region of the exhaust tube extending through the exhaust tube, the second region having a low exhaust fluid pressure drop; an exhaust valve operatively disposed within the second region and configured to allow exhaust fluid to flow through the second region only when a flow rate of the exhaust fluid becomes great enough to result in back pressure beyond an allowable limit; and a plurality of thermoelectric elements in thermal communication with an outer surface of the outer shell.
摘要:
Applicants have discovered that electrostatic discharge (ESD) may, in some circumstances, result in current densities sufficient to ignite unprotected reactive composite materials. They have further discovered that a reactive composite material (RCM) can be protected from ESD ignition without adversely affecting the desirable properties of the RCM by the application of conducting and/or insulating materials at appropriate locations on the RCM. Thus ESD-protected RCM structures can be designed for such sensitive applications as ignition of propellants, generation of light bursts, and structural materials for equipment that may require controlled self-destruction.
摘要:
Novel reactive composite materials and associated methods for making the same which are pertinent to numerous new or improved applications. The method for making the reactive composite materials utilizes mechanical deformation to manufacture such materials with controlled, predictable characteristics. In the first deformation step, an assembly of reactive layers and/or particles is plastically deformed to reduce its cross sectional area by one-half or more. Portions of the deformed sheets are stacked or bent into a new assembly, and the new assembly is then deformed. The steps of assembly and deformation are repeated a sufficient number of times that the resulting materials are only locally layered but have relatively uniform reaction velocity and heat generating characteristics predictable by stochastic models derived herein.
摘要:
A reactive composite structure having selected energetic and mechanical properties, and methods of making reactive composite structures enabling the construction of complex parts and components by machining and forming of reactive composite materials without compromising the energetic or mechanical properties of the resulting reactive composite structure.
摘要:
Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.