摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A semiconductor device comprises an active layer having a quantum well structure, the active layer including a well layer and a barrier layer and being sandwiched by a first conductivity type layer and a second conductivity type layer, wherein a first barrier layer is provided on side of the first conductivity type layer in the active layer and a second barrier layer is provided on the side of the second conductivity type layer in the active layer, at least one well layer is sandwiched thereby, and the second barrier layer has a band gap energy lower than that of the first barrier layer in the form of asymmetric barrier layer structure, where the second conductivity type layer preferably includes a carrier confinement layer having a band gap energy higher than that of the first barrier layer, resulting in a reverse structure in each of conductivity type layer in respect to the asymmetric structure of the active layer to provide a waveguide structure having excellent crystallinity and device characteristics in the nitride semiconductor light emitting device operating at a wavelength of 380 nm or shorter.
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A light emitting apparatus comprising a light emitting device (101) disposed on a supporting body (105), and coating layers ((108, 109) that bind a fluorescent substance that absorbs light emitted by the light emitting device (101) and emits light of a different wavelength and secures the fluorescent substance onto the surface of the light emitting device (101). The coating layers (108, 109) are made of an inorganic material including an oxide and a hydroxide, each containing at least one element selected from the group consisting of Si, Al, Ga, Ti, Ge, P, B, Zr, Y, Sn, Pb and alkali earth metals. Also an adhesive layer (110) is made of the same inorganic material as that of the coating layers (108, 109).
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A semiconductor device comprises an active layer having a quantum well structure, the active layer including a well layer and a barrier layer and being sandwiched by a first conductivity type layer and a second conductivity type layer, wherein a first barrier layer is provided on side of the first conductivity type layer in the active layer and a second barrier layer is provided on the side of the second conductivity type layer in the active layer, at least one well layer is sandwiched thereby, and the second barrier layer has a band gap energy lower than that of the first barrier layer in the form of asymmetric barrier layer structure, where the second conductivity type layer preferably includes a carrier confinement layer having a band gap energy higher than that of the first barrier layer, resulting in a reverse structure in each of conductivity type layer in respect to the asymmetric structure of the active layer to provide a waveguide structure having excellent crystallinity and device characteristics in the nitride semiconductor light emitting device operating at a wavelength of 380 nm or shorter.
摘要:
A light emitting apparatus comprising a light emitting device (101) disposed on a supporting body (105), and coating layers ((108, 109) that bind a fluorescent substance that absorbs light emitted by the light emitting device (101) and emits light of a different wavelength and secures the fluorescent substance onto the surface of the light emitting device (101). The coating layers (108, 109) are made of an inorganic material including an oxide and a hydroxide, each containing at least one element selected from the group consisting of Si, Al, Ga, Ti, Ge, P, B, Zr, Y, Sn, Pb and alkali earth metals. Also an adhesive layer (110) is made of the same inorganic material as that of the coating layers (108, 109).
摘要:
A substrate 1 for growing nitride semiconductor has a first and second face and has a thermal expansion coefficient that is larger than that of the nitride semiconductor. At least n-type nitride semiconductor layers 3 to 5, an active layer 6 and p-type nitride semiconductor layers 7 to 8 are laminated to form a stack of nitride semiconductor on the first face of the substrate 1. A first bonding layer including more than one metal layer is formed on the p-type nitride semiconductor layer 8. A supporting substrate having a first and second face has a thermal expansion coefficient that is larger than that of the nitride semiconductor and is equal or smaller than that of the substrate 1 for growing nitride semiconductor. A second bonding layer including more than one metal layer is formed on the first face of the supporting substrate. The first bonding layer 9 and the second bonding layer 11 are faced with each other and, then, pressed with heat to bond together. After that, the substrate 1 for growing nitride semiconductor is removed from the stack of nitride semiconductor so that a nitride semiconductor device is provided.
摘要:
A gallium nitride-based multilayered reflective membrane with an excellent crystallinity while keeping a high reflectivity and a gallium nitride-based light emitting element using such a multilayered reflective are provided. The multilayered reflective membrane includes an AlaGa1−aN layer (0
摘要:
A semiconductor device comprises an active layer having a quantum well structure, the active layer including a well layer and a barrier layer and being sandwiched by a first conductivity type layer and a second conductivity type layer, wherein a first barrier layer is provided on side of the first conductivity type layer in the active layer and a second barrier layer is provided on the side of the second conductivity type layer in the active layer, at least one well layer is sandwiched thereby, and the second barrier layer has a band gap energy lower than that of the first barrier layer in the form of asymmetric barrier layer structure, where the second conductivity type layer preferably includes a carrier confinement layer having a band gap energy higher than that of the first barrier layer, resulting in a reverse structure in each of conductivity type layer in respect to the asymmetric structure of the active layer to provide a waveguide structure having excellent crystallinity and device characteristics in the nitride semiconductor light emitting device operating at a wavelength of 380 nm or shorter.