Abstract:
A power management chip and a power management device including the power management chip. The power management chip includes at least one power switch and a driver unit for generating a driving signal for driving the at least one power switch, the driver unit including one or more circuit units formed on a same substrate as the at least one power switch.
Abstract:
A graphene transistor includes: a gate electrode on a substrate; a gate insulating layer on the gate electrode; a graphene channel on the gate insulating layer; a source electrode and a drain electrode on the graphene channel, the source and drain electrode being separate from each other; and a cover that covers upper surfaces of the source electrode and the drain electrode and forms an air gap above the graphene channel between the source electrode and the drain electrode.
Abstract:
A graphene transistor includes: a gate electrode on a substrate; a gate insulating layer on the gate electrode; a graphene channel on the gate insulating layer; a source electrode and a drain electrode on the graphene channel, the source and drain electrode being separate from each other; and a cover that covers upper surfaces of the source electrode and the drain electrode and forms an air gap above the graphene channel between the source electrode and the drain electrode.
Abstract:
A method of manufacturing a High Electron Mobility Transistor (HEMT) may include forming first and second material layers having different lattice constants on a substrate, forming a source, a drain, and a gate on the second material layer, and changing the second material layer between the gate and the drain into a different material layer, or changing a thickness of the second material layer, or forming a p-type semiconductor layer on the second material layer. The change in the second material layer may occur in an entire region of the second material layer between the gate and the drain, or only in a partial region of the second material layer adjacent to the gate. The p-type semiconductor layer may be formed on an entire top surface of the second material layer between the gate and the drain, or only on a partial region of the top surface adjacent to the gate.
Abstract:
A semiconductor device may include a semiconductor substrate, first and second source/drain regions on a surface of the semiconductor substrate, and a channel region on the surface of the semiconductor substrate with the channel region between the first and second source/drain regions. An insulating layer pattern may be on the channel region, a first conductive layer pattern may be on the insulating layer, and a second conductive layer pattern may be on the first conductive layer pattern. The insulating layer pattern may be between the first conductive layer pattern and the channel region, and the first conductive layer pattern may include boron doped polysilicon with a surface portion having an accumulation of silicon boronide. The first conductive layer pattern may be between the second conductive layer pattern and the insulating layer pattern, and the second conductive layer pattern may include tungsten. Related methods are also discussed.
Abstract:
A capacitor of a semiconductor device includes a cylinder type capacitor lower electrode, a dielectric layer, and an upper electrode. The upper electrode includes a metallic layer on the dielectric layer and a doped polySi1-xGex layer stacked on the metallic layer. Methods of forming these capacitors also are provided.
Abstract:
A field effect transistor can include a vertical channel protruding from a substrate including a source/drain region junction between the vertical channel and the substrate, and an insulating layer extending on a side wall of the vertical channel toward the substrate to beyond the source/drain region junction. The transistor can also include a nitride layer extending on the side wall away from the substrate to beyond the insulating layer, a second insulating layer extending on the side wall that is separated from the channel by the nitride layer, and a gate electrode extending on the side wall toward the substrate to beyond the source/drain region junction. Related methods are also disclosed.
Abstract:
A method of forming a field effect transistor includes forming a vertical channel protruding from a substrate including a source/drain region junction between the vertical channel and the substrate, and forming an insulating layer extending on a side wall of the vertical channel toward the substrate to beyond the source/drain region junction. The method may also include forming a nitride layer extending on the side wall away from the substrate to beyond the insulating layer, forming a second insulating layer extending on the side wall that is separated from the channel by the nitride layer, and forming a gate electrode extending on the side wall toward the substrate to beyond the source/drain region junction.
Abstract:
A wire forming method for a semiconductor device includes the steps of depositing an insulation material on a semiconductor substrate and patterning the insulation material to form a first insulation layer, forming a lower capping layer on the first insulation layer, etching the lower capping layer and the first insulation layer to form a first contact hole that exposes a first part of the semiconductor substrate, forming a wire layer over the capping layer and the first part of the semiconductor substrate, performing a chemical and mechanical polishing (CMP) process with respect to the wire layer and the lower capping layer to expose the first insulation layer, forming a second insulation layer over the wire layer and the first insulation layer, and etching the first and second insulation layers to form a second contact hole that exposes a second part of the semiconductor substrate. The wire forming method can prevent the lifting of the wire layer, the splitting of the lower insulation layer, and the formation of a protrusion n the second contact hole.
Abstract:
A storage node of a magnetic memory device includes: a lower magnetic layer, a tunnel barrier layer formed on the lower magnetic layer, and a free magnetic layer formed on the tunnel barrier. The free magnetic layer has a magnetization direction that is switchable in response to a spin current. The free magnetic layer has a cap structure surrounding at least one material layer on which the free magnetic layer is formed.