摘要:
A semiconductor structure and a process thereof are provided. The semiconductor structure includes a semiconductor wafer having a first surface and a second surface opposite to the first surface, through silicon vias and a crack stopping slot. The through silicon vias are embedded in the semiconductor wafer and connected between the first surface and the second surface. The crack stopping slot is located in the periphery of the second surface of the semiconductor wafer. The depth of the crack stopping slot is less than or equal to the thickness of the semiconductor wafer. The process firstly provides a semiconductor wafer having through silicon vias. Then, the aforementioned crack stopping slot is formed at a back side of the semiconductor wafer opposite to the first surface. Next, the semiconductor wafer is thinned from the back side to expose a second end of each through silicon via.
摘要:
A fabricating method for silicon on insulator is disclosed, and the fabricating method includes stripping the oxide and the nitride on the bottom surface of each of the trenches, forming a porous silicon on portions of the substrate by an anodizing process, spin coating a dielectric material to fill up the trenches and performing a thermal process to convert the porous silicon to an insulating layer.
摘要:
A real-time system adapted to a PVD apparatus for monitoring and controlling film uniformity is described. The system includes a shielding plate, a monitoring device, and a data processing program. The shielding plate is disposed on an inner wall of a reaction chamber above a wafer stage. An opening in the center of the shielding plate exposes the wafer. The monitoring device including a scanner and a sensor respectively disposed on opposite sidewalls of the reaction chamber between the shielding plate and the wafer stage is used for measuring the flux of the particles on every portion of the wafer to acquire real-time uniformity data including a function of the wafer position and the flux. The data processing program compares the real-time uniformity data and reference uniformity data, and a feedback signal is outputted to the PVD apparatus to adjust the process parameter thereof for controlling film uniformity.
摘要:
A real-time system adapted to a PVD apparatus for monitoring and controlling film uniformity is described. The system includes a shielding plate, a monitoring device, and a data processing program. The shielding plate is disposed on an inner wall of a reaction chamber above a wafer stage. An opening in the center of the shielding plate exposes the wafer. The monitoring device including a scanner and a sensor respectively disposed on opposite sidewalls of the reaction chamber between the shielding plate and the wafer stage is used for measuring the flux of the particles on every portion of the wafer to acquire real-time uniformity data including a function of the wafer position and the flux. The data processing program compares the real-time uniformity data and reference uniformity data, and a feedback signal is outputted to the PVD apparatus to adjust the process parameter thereof for controlling film uniformity.
摘要:
An integrated circuit structure comprises a semiconductor substrate, a device region positioned in the semiconductor substrate, an insulating region adjacent to the device region, an isolation structure positioned in the insulating region and including a bottle portion and a neck portion filled with a dielectric material, and a dielectric layer sandwiched between the device region and the insulation region.
摘要:
An integrated circuit structure comprises a semiconductor substrate, a device region positioned in the semiconductor substrate, an insulating region adjacent to the device region, an isolation structure positioned in the insulating region and including a bottle portion and a neck portion filled with a dielectric material, and a dielectric layer sandwiched between the device region and the insulation region.
摘要:
An isolation method of active area for semiconductor forms an isolated active area in a substrate. The substrate is a p-type silicon substrate. A pad oxide layer is formed on the substrate. A patterned sacrificial layer and an upper mask layer are formed on the pad oxide layer, where the upper mask layer is formed over the isolation region of the substrate. A gap is formed between the patterned sacrificial layer and the upper mask layer. An implantation process is performed to dope ions into the substrate through the gap, which forms an n-type barrier to surround the active areas. Lastly, the patterned sacrificial layer is stripped, and an anodization process is utilized to convert p-type bulk silicon into porous silicon. Then, an oxidation process is performed to oxidize the porous silicon to form a silicon dioxide isolation region for the active areas.
摘要:
A Schottky diode with high antistatic capability has an N− type doped drift layer formed on an N+ type doped layer. The N− type doped drift layer has a surface formed with a protection ring. Inside the protection ring is a P-type doped area. The N− type doped drift layer surface is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N− type doped drift layer and the P-type doped area forms a Schottky contact. The P-type doped area has a low-concentration lower layer and a high-concentration upper layer, so that the surface ion concentration is high in the P-type doped area. The Schottky diode thus has such advantages of lowered forward voltage drop and high antistatic capability.
摘要:
A recessed channel transistor comprises a semiconductor substrate having a trench isolation structure, a gate structure having a lower block in the semiconductor substrate and an upper block on the semiconductor substrate, two doped regions positioned at two sides of the upper block and above the lower block, and an insulation spacer positioned at a sidewall of the upper block and having a bottom end sandwiched between the upper block and the doped regions. In particular, the two doped regions serves as the source and drain regions, respectively, and the lower block of the gate structure serves as the recessed gate of the recessed channel transistor.
摘要:
Capacitors and methods for fabricating the same are provided. An exemplary embodiment of a capacitor comprises a dielectric layer and a first conductive layer thereover. A supporting rib is embedded in the first conductive layer and extends along a first direction. A second conductive layer is embedded in the first conductive layer and extends along a second direction perpendicular with the first direction, wherein a portion of the second conductive layer forms across the supporting rib and is structurally supported by the supporting rib. A capacitor layer is formed between the first and second conductive layers to electrically insulate the first and second conductive layers.