摘要:
Disclosed are a joint production method and device for aziridine, piperazine and triethylenediamine. The method comprises: reaction 1, preparing piperazine and triethylenediamine by taking ethanol amine as a raw material under the existence of a cyclamine catalyst; reaction 2, preparing aziridine by taking the ethanol amine as the raw material under the existence of a catalyst B; and taking heat released in the reaction 1 as a heat source of heat absorption in the reaction 2. The device comprises a reactor 1 for carrying out the reaction 1 and the heat exchange between reaction materials of the reaction 1 and the raw material of the reaction 2 and a reactor 2 for carrying out the reaction 2. According to the present invention, the same raw material, namely the ethanol amine is adopted, aziridine, piperazine and triethylenediamine can be produced in a joint manner, the heat released in the reaction 1 is used for preheating materials in the reaction 2, so that heat coupling between the reactions is implemented, energy conservation is facilitated and competitiveness of the device is improved.
摘要:
The present invention relates to a catalyst for synthesizing ethylenimine as well as a preparation method and application thereof. The related catalyst comprises a carrier and metal ions loaded on the carrier; the carrier is a composite oxide comprising titanium, silicon and phosphorus elements; the metal ions are magnesium ions, iron ions and cesium ions; the molar ratio of the magnesium ions to the iron ions to the cesium ions is (1-10):1:0.1; the mass of all metal ions is 0.5-10 percent of that of the carrier. In the related preparation method, a catalyst precursor is roasted at the temperature of 350-650° C., so that the catalyst is obtained; the catalyst precursor is the mixture of the carrier, soluble salt of magnesium, soluble salt of iron and soluble salt of cesium. The present invention also provides the application of the catalyst to synthesis of the ethylenimine by using amino alcohol as the raw material. Compared with a common catalyst which has the requirement on the temperature of over 400° C., the catalyst of the present invention obviously reduces the reaction temperature. The prepared catalyst can catalyze the intramolecular dehydration reaction of the amino alcohol and has relatively excellent selectivity.
摘要:
Disclosed is a catalyst for preparing 2,3,3,3-tetrafluoropropene by gas-phase hydrodechlorination, which solves the problem of the high costs and easy deactivation of traditional chlorofluorocarbon hydrodechlorination catalysts. The disclosed catalyst is characterized in consisting of an active component and a carrier, wherein the active component is a combination of one or more of the metals: Ni, Mo, W, Co, Cr, Cu, Ce, La, Mn and Fe. The catalyst in the present invention has excellent performance, high activity, good stability and a low reaction temperature, effectively reduces reaction energy consumption, and has industrial application value.
摘要:
Disclosed are a liquid crystal (LC) composition and a high-frequency component including the same. The LC composition includes one or more selected from compounds shown in structural formula (I) and one or more selected from compounds shown in structural formula (II):
where R1 is selected from alkyl with 1 to 10 carbon atoms, alkenyl with 2 to 10 carbon atoms, fluorinated alkyl, fluorinated alkenyl, and cycloalkyl; one of X1, X2, and X3 is methyl or chlorine, and the other two are hydrogen; k, m, n, and p are 0 or 1; and ring A is selected from a benzene ring, cyclohexane, and cyclohexene;
where R2 and R3 each are selected from alkyl with 1 to 10 carbon atoms, alkenyl with 2 to 10 carbon atoms, fluorinated alkyl, fluorinated alkenyl, cycloalkyl, halogen, and NCS; and ring A and ring B each are selected from a benzene ring, cyclohexane, and cyclohexene.
摘要:
Disclosed are a joint production method and device for aziridine, piperazine and triethylenediamine. The method comprises: reaction 1, preparing piperazine and triethylenediamine by taking ethanol amine as a raw material under the existence of a cyclamine catalyst; reaction 2, preparing aziridine by taking the ethanol amine as the raw material under the existence of a catalyst B; and taking heat released in the reaction 1 as a heat source of heat absorption in the reaction 2. The device comprises a reactor 1 for carrying out the reaction 1 and the heat exchange between reaction materials of the reaction 1 and the raw material of the reaction 2 and a reactor 2 for carrying out the reaction 2. According to the present invention, the same raw material, namely the ethanol amine is adopted, aziridine, piperazine and triethylenediamine can be produced in a joint manner, the heat released in the reaction 1 is used for preheating materials in the reaction 2, so that heat coupling between the reactions is implemented, energy conservation is facilitated and competitiveness of the device is improved.
摘要:
Disclosed is a process for the preparation of 1,3,3,3-tetrafluoropropene, comprising: (a) a compound having the formula CF3-xClxCHClCHF2-yCly and in the presence of a compound catalyst, undergoes, through n serially-connected reactors, gas-phase fluorination with hydrogen fluoride, producing 1,2,3-trichloro-1,1,3-trifluoropropane, and 1,2-dichloro-1,1,3,3-tetrafluoropropane; in said formula, x=1, 2 or 3; y=1 or 2, and 3≦x+y≦5; (b) 1,2,3-trichloro-1,1,3-trifluoropropane, and 1,2-dichloro-1,1,3,3-tetrafluoropropane undergo, in the presence of a dehalogenation catalyst, gas-phase dehalogenation with hydrogen, producing 3-chloro-1,3,3-trifluoropropene, and 1,1,3,3-tetrafluoropropene; (c) 3-chloro-1,3,3-trifluoropropene and 1,1,3,3-tetrafluoropropene undergo, in the presence of a fluorination catalyst, gas-phase fluorination with hydrogen fluoride, producing 1,3,3,3-tetrafluoropropene. The present invention is primarily used to produce 1,3,3,3-tetrafluoropropene.
摘要:
Disclosed are a joint production method and device for aziridine, piperazine and triethylenediamine. The method comprises: reaction 1, preparing piperazine and triethylenediamine by taking ethanol amine as a raw material under the existence of a cyclamine catalyst; reaction 2, preparing aziridine by taking the ethanol amine as the raw material under the existence of a catalyst B; and taking heat released in the reaction 1 as a heat source of heat absorption in the reaction 2. The device comprises a reactor 1 for carrying out the reaction 1 and the heat exchange between reaction materials of the reaction 1 and the raw material of the reaction 2 and a reactor 2 for carrying out the reaction 2. According to the present invention, the same raw material, namely the ethanol amine is adopted, aziridine, piperazine and triethylenediamine can be produced in a joint manner, the heat released in the reaction 1 is used for preheating materials in the reaction 2, so that heat coupling between the reactions is implemented, energy conservation is facilitated and competitiveness of the device is improved.
摘要:
Disclosed is a catalyst for preparing 2,3,3,3-tetrafluoropropene by gas-phase hydrodechlorination, which solves the problem of the high costs and easy deactivation of traditional chlorofluorocarbon hydrodechlorination catalysts. The disclosed catalyst is characterized in consisting of an active component and a carrier, wherein the active component is a combination of one or more of the metals: Ni, Mo, W, Co, Cr, Cu, Ce, La, Mn and Fe. The catalyst in the present invention has excellent performance, high activity, good stability and a low reaction temperature, effectively reduces reaction energy consumption, and has industrial application value.
摘要:
Disclosed in the present invention are a chromium-free gas phase fluorination catalyst and an application thereof. The precursor of the related chromium-free gas phase fluorination catalyst consists of a compound containing iron element, a compound containing rare earth metal element and a compound containing element A, wherein element A is one selected from Ca, Al, Mg and Ti, the precursor is subjected to roasting and fluorination treating to obtain the chromium-free gas phase fluorination catalyst. The precursor of the catalyst is roasted at 400-500° C. and fluoridized with hydrogen fluoride at 350-450° C. to obtain the chromium-free gas phase fluorination catalyst. The catalyst has characteristics of being chromium-free and environment-friendly, good catalytic activity and long life etc. The catalyst can be used for preparing hydrofluoroolefins or hydrochlorofluoroolefins from halohydrocarbons.
摘要:
Disclosed is a process for the preparation of 2,3,3,3-tetrafluoropropene, comprising the following two reaction steps: a. a compound having the formula CF3-xClxCF2-yClyCH2Cl undergoes gas-phase fluorination with hydrogen fluoride through n serially-connected reaction vessels in the presence of a compound catalyst, producing 2,3-dichloro-1,1,1,2-tetrafluoropropane, 1,2,3-trichloro-1,1,2-trifluoropropane, and 1,3-dichloro-1,1,2,2-tetrafluoropropane; in said formula, x=1, 2, 3, y=1, 2, and 3≦x+y≦5; b. the 2,3-dichloro-1,1,1,2-tetrafluoropropane, 1,2,3-trichloro-1,1,2-trifluoropropane, and 1,3-dichloro-1,1,2,2-tetrafluoropropane undergo gas-phase dehalogenation with hydrogen in the presence of a dehalogenation catalyst, producing 2,3,3,3-tetrafluoropropene and 3-chloro-2,3,3-trifluoropropene, then separation and refining are performed, producing 2,3,3,3-tetrafluoropropene. The present invention is primarily used to produce 2,3,3,3-tetrafluoropropene.