Abstract:
A printed circuit board (PCB) includes a wire pattern that has a low processing cost and a high yield by simplifying the structure of the PCB and can increase the joining characteristics and reliability of minute bumps when a flip-chip bonding process is performed. The PCB includes a body resin layer having lower and upper surfaces, a wire pattern on or in one of the upper and lower surfaces of the body resin layer, at least one through-hole contact extending from the wire pattern through the body resin layer, and a solder resist on the upper and lower surfaces of the body resin layer, openings of the solder resist corresponding to at least one of a solder ball land and a bump land, the solder ball land and the bump land being configured to couple the PCB to a semiconductor chip. If the solder ball land is on the one-layer wire pattern, the bump land is on the through-hole contact, and if the bump land is on the wire pattern, the solder ball land is on the through-hole contact.
Abstract:
Disclosed herein is a disk drive motor which can prevent a disk from wobbling despite having a simple structure. The disk drive motor includes a turntable which is rotated by a drive unit and supports a disk thereon, and a disk support which is attached onto the turntable to support the disk thereon. Grooves are formed in the disk support. Each groove is inclined based on the radial direction of the turntable in the direction opposite to the direction in which the disk rotates. In the present invention, when a disk rotates, air which has been in a space between the turntable and the disk is discharged outside through the grooves, so that adsorption force is generated by a difference in pressure between the air and the space between the turntable and the disk. Therefore, the disk can be prevented from wobbling when rotating.
Abstract:
A hybrid coupled plasma type apparatus includes: a chamber having a gas-injecting unit; an electrostatic chuck in the chamber; an insulating plate over the gas-injecting unit; a high frequency generator; an impedance matching circuit connected to the high frequency generator; first and second antennas connected to the impedance matching circuit in parallel, a power of the high frequency generator being supplied to the first and second antennas; an electrode of a plate shape connected to one of the first and second antennas in serial, the power of the high frequency generator being supplied to the electrode; and a power distributor between the high frequency generator and one of the first and second antennas.
Abstract:
A plasma generation apparatus includes: a chamber having a chamber lid and defining an airtight reaction region; a susceptor in the chamber; a gas supplier supplying a process gas to the chamber; and a toroidal core vertically disposed with respect to the susceptor through the chamber lid, including: a toroidal ferromagnetic core combined with the chamber, the toroidal ferromagnetic core having a first portion outside the chamber and a second portion inside the chamber, the second portion having an opening portion; a radio frequency (RF) power supply connected to the chamber; an induction coil electrically connected to the RF power supply, the induction coil rolling the first portion; and a matching circuit matching an impedance between the RF power supply and the induction coil.
Abstract:
The flip chip package includes a semiconductor chip electrically connected to a circuit substrate. A protective cap is disposed over the semiconductor chip, and includes at least one portion extending beyond an edge of the semiconductor chip.
Abstract:
The invention relates to an antenna device of a low impedance for generating a large quantity of inductively coupled plasma to process a large size of a specimen with adjustment for a uniform distribution in the density of plasma, comprising: a high frequency power source; a first antenna for receiving the high frequency power supplied from the high frequency power source; and a second antenna connected in parallel with the first antenna for receiving the high frequency power supplied from the high frequency power source, wherein a resonant state is kept between the first and second antennas.
Abstract:
The stack package includes a first semiconductor package and a second semiconductor package. The first semiconductor package includes a first substrate having a first modulus and at least one semiconductor chip mounted on the first substrate. The second semiconductor package stacked on the first semiconductor package and includes a second substrate having a second modulus and at least one semiconductor chip mounted on the second substrate. The second modulus is less than the first modulus. Even in the event that the first semiconductor package is under severe warpage due to a temperature change, the flexible second substrate, which includes e.g., polyimide or poly ethylene terephthalate, of the second semiconductor package may be less sensitive to the temperature change, thereby improving reliability of the stack package.
Abstract:
Disclosed herein is a spindle motor including: a turn table made of a deformable iron based material; a turn table inner diameter part provided at the center of the turn table, having a hollow part, and including a coupling part formed in an inner peripheral surface thereof; and a shaft inserted into the hollow part of the turn table inner diameter part to thereby contact the coupling part and rotate in an axial direction.
Abstract:
An antenna structure includes four induction antennas which have the same structure, are connected in parallel and are disposed to be overlapped. The induction antennas include an external upper section arranged on a first quadrant of a first layer, an internal upper section connected to the external upper section and arranged on a second quadrant of the first layer, an internal lower section connected to the internal upper section and arranged on a third quadrant of a second layer arranged on a lower part of the first layer, and an external lower section connected to the internal lower section and arranged on a fourth quadrant of the second layer. An RF power is supplied to one end of the external upper section, and the other end of the external lower section is grounded.
Abstract:
An antenna structure includes four induction antennas which have the same structure, are connected in parallel and are disposed to be overlapped. The induction antennas include an external upper section arranged on a first quadrant of a first layer, an internal upper section connected to the external upper section and arranged on a second quadrant of the first layer, an internal lower section connected to the internal upper section and arranged on a third quadrant of a second layer arranged on a lower part of the first layer, and an external lower section connected to the internal lower section and arranged on a fourth quadrant of the second layer. An RF power is supplied to one end of the external upper section, and the other end of the external lower section is grounded.