Abstract:
Disclosed is an optical filter that has a high refractive index and low extinction coefficient characteristics in a narrowband of approximately 800 nm-1100 nm, and a sensor system comprising the same.
Abstract:
A multi-lamp electronic ballast for a high intensity discharge lamp is provided. The multi-lamp electronic ballast includes a first igniter connected to the inverter unit to induce a high voltage from a current input from the inverter unit and to apply the high voltage to the first lamp and a second igniter having the one side end connected to the inverter unit and the other side end connected in parallel to a second lamp.
Abstract:
A process for forming an MOS semiconductor device having an LDD structure is disclosed, which may include the steps of: forming a first insulating layer on a semiconductor substrate; forming a conductive layer on the first insulating layer; forming a second insulating layer on the conductive layer; forming a third insulating layer on the second insulating layer; forming an etch inhibiting layer pattern for forming an over-sized gate on a relevant area of the second insulating layer; removing the second and third insulating layers and the conductive layer excluding the portions protected from the etch inhibiting layer, so as to form a stacked pattern consisting of the residual second insulating layer/the third insulating layer/the conductive layer; forming a first impurity ion buried layer on a relevant portion of the semiconductor substrate utilizing the stacked pattern for formation of a source/drain region; removing the etch inhibiting layer; removing an edge portion of the remaining second insulating layer of the stacked pattern for forming the final gate; removing the residual third insulating layer of the stacked pattern; etching the residual conductive layer by using the partly removed second insulating layer as the mask to form the final gate; forming a second impurity ion buried layer on the relevant portion of the semiconductor substrate for forming the LDD structure; forming a fourth insulating layer on the whole surface of the wafer; and activating the first and second ion buried layers.
Abstract:
A controlling device of a tunable filter includes a base, a tunable filter on the base along an optical path between first and second optical fibers, a holder rotatably installed on the base to support the tunable filter, a driving unit installed on the base for providing a rotational force, a speed reducing device, and a rotating unit for rotating the holder in accordance with the linear movement of the movable member. The speed reducing device has a worm gear extending from a rotating shaft of the driving unit, and a movable member provided with a threaded hole engaged with the worm gear to allow reciprocal movement along the worm gear according to the rotation direction of the worm gear.
Abstract:
A method and apparatus for controlling the amount of ozone concentration in the layers of a film depositing system and the multi-layered structure produced thereby, whereby the concentration of ozone in each layer gradually changes from a low ozone concentration in the first deposited layer to a high ozone concentration in the last deposited layer.
Abstract:
A method and apparatus for controlling the amount of ozone concentration in the layers of a film depositing system and the multi-layered structure produced thereby, whereby the concentration of ozone in each layer gradually changes from a low ozone concentration in the first deposited layer to a high ozone concentration in the last deposited layer.
Abstract:
A multistage phase shift mask includes a light transmissive substrate having light shielding regions and light transmissive regions. A shielding layer is disposed on the shielding regions of the substrate and a phase shifter layer extends over the light transmissive regions between a pair of the shielding regions. A first etched portion on the substrate is adjacent to the phase shifter layer that contacts with the substrate and a second etched portion on the substrate is between the phase shifter layer and the first etched portion of the substrate.The second etched portion consists of a gradual concave slope allowing a phase shift from approximately 0 to 180 degrees.
Abstract:
A method for fabricating a transistor includes the steps of forming a gate insulation film on a substrate, forming a gate electrode on the gate insulation film and forming a first insulation film pattern on the gate electrode. A side wall spacer is formed at side surfaces of the first insulation film pattern and the gate electrode. The gate insulation film is etched to expose a portion of a surface of the substrate. An epitaxial layer is formed on the substrate where the gate insulation film is etched. The side wall spacer is removed and a thermal oxide film is grown on a portion corresponding to where the side wall spacer is removed and on an upper portion of the epitaxial layer. A source/drain region is formed by ion-implanting an impurity into the epitaxial layer.
Abstract:
A method for forming a multi-layer resist (MLR) pattern capable of preventing a generation of a charge-up effect in an exposure to electron beams and reducing alignment detect errors, and employing a silylation process, thereby achieving an improvement in resonance. The method includes the steps of forming a primary alignment mark on a silicon substrate formed with a cell part including a plurality of cell patterns having steps, depositing a lower deposition film over the silicon substrate, coating a lower resist film over the lower deposition film, subjecting a portion of the lower resist film to a light exposure and a development to form a secondary alignment mark, forming an intermediate insulating layer over the lower resist film, coating an upper resist film over the intermediate insulating layer to form a MLR film, subjecting the upper resist film to a light exposure to fork a latent image pattern at a non-exposed portion of the upper resist film, subjecting the resulting structure to a silylation to form a silylated layer over the upper resist film, etching the upper resist film to form an upper resist pattern and removing the silylated layer, patterning the intermediate insulating layer by use of the upper resist pattern as a mask, and etching the lower resist film by use of the intermediate insulating layer as a mask, thereby forming a MLR pattern.
Abstract:
A multiple wavelength surface-emitting laser device equipped with a substrate and a plurality of surface-emitting lasers formed on the substrate by a continuous manufacturing process is provided. Each surface-emitting laser includes a bottom reflection layer on the substrate, that is doped with impurities of one type and composed of alternating semiconductor material layers having different refractive indexes; an active layer that is formed on the bottom reflection layer; an intermediate layer that is doped with impurities of the other type on the active layer; a top electrode that is formed on the intermediate layer to have a window through which light is emitted; and a dielectric reflection layer where dielectric materials with different refractive indexes are alternately layered on the intermediate layer and/or the top electrode to a thickness suitable for a desired resonance wavelength, and the resonance wavelength is controlled by adjusting the thickness of the dielectric reflection layer.