摘要:
An arrangement for controlling bevel etch rate during plasma processing within a processing chamber. The arrangement includes a power source and a gas distribution system. The arrangement also includes a lower electrode, which is configured at least for supporting a substrate. The arrangement further includes a top ring electrode positioned above the substrate and a bottom ring electrode positioned below the substrate. The arrangement yet also includes a first match arrangement coupled to the top ring electrode and configured at least for controlling current flowing through the top ring electrode to control amount of plasma available for etching at least a part of the substrate top edge. The arrangement yet further includes a second match arrangement configured to control the current flowing through the bottom ring electrode to control amount of plasma available for at least etching at least a part of the substrate bottom edge.
摘要:
A method of film deposition using localized plasma to protect bevel edge of a wafer in a plasma chamber. The method includes adjusting an electrode gap between a movable electrode and a stationary electrode, the wafer being disposed on one of the movable electrode and the stationary electrode, to a gap distance configured to prevent plasma formation over a center portion of the wafer, the gap distance also dimensioned such that a plasma-sustainable condition around the bevel edge of the wafer is formed after the adjusting. The method also includes flowing deposition gas into the plasma chamber. The method includes maintaining, using a heater, a chuck temperature that is configured to facilitate film deposition on the bevel edge. The method further includes generating the localized plasma from the deposition gas for depositing a film on the bevel edge.
摘要:
A method for detecting plasma unconfinement in a reaction chamber during a bevel edge cleaning operation is provided. The method initiates with selecting a wavelength associated with expected by products of a bevel edge clean process. The method includes cleaning the bevel edge area of a substrate and monitoring the intensity of the selected wavelengths during the cleaning for deviation from a threshold wavelength intensity. The cleaning is terminated if the deviation from the threshold wavelength intensity exceeds a target deviation.
摘要:
A method for generating plasma for removing an edge polymer from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the edge polymer. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an RF field to the cavity using the powered electrode to generate the plasma from the inert gas and process gas.
摘要:
Methods for bevel edge etching are provided. One example method is for etching a film on a bevel edge of a substrate in a plasma etching chamber. The method includes providing the substrate on a substrate support in the plasma etching chamber. The plasma etching chamber has a top edge electrode and a bottom edge electrode disposed to surround the substrate support. Then flowing an etching process gas through a plurality of edge gas feeds disposed along a periphery of the gas delivery plate. The periphery of the gas deliver plate is oriented above the substrate support and the bevel edge of the substrate, and the flowing is further directed to a space between the top edge electrode and bottom edge electrode. And, flowing a tuning gas through a center gas feed of the gas delivery plate.
摘要:
Improved mechanisms of removal of etch byproducts, dielectric films and metal films near the substrate bevel edge, and etch byproducts on substrate backside and chamber interior is provided to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. An exemplary plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode surrounding a substrate support in the plasma processing chamber, wherein the substrate support is configured to receive the substrate and the bottom edge electrode and the substrate support are electrically isolated from each other by a bottom dielectric ring. The chamber also includes a top edge electrode surrounding a gas distribution plate opposing the substrate support, wherein the top edge electrode and the gas distribution plate are electrically isolated from each other by a top dielectric ring, and the top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate.
摘要:
Apparatus and methods protect a central process exclusion region of a substrate during processing of an edge environ region of process performance. Removal of undesired materials is only from the edge environ region while the central device region is protected from damage. Field strengths are configured to protect the central region from charged particles from plasma in a process chamber and to foster removal of the undesired materials from only the edge environ region. A magnetic field is configured with a peak value adjacent to a border between the central and edge environ regions. A strong field gradient extends from the peak radially away from the border and away from the central region to repel the charged particles from the central region. The strength and location of the field are adjustable by axial relative movement of magnet sections, and flux plates are configured to redirect the field for desired protection.
摘要:
An apparatus for removing material on a bevel of a wafer is provided. A wafer support with a diameter that is less than the diameter of the wafer, wherein the wafer support is on a first side of the wafer, and wherein an outer edge of the wafer extends beyond the wafer support around the wafer is provided. An RF power source is electrically connected to the wafer. A central cover is spaced apart from the wafer support. A first electrically conductive ring is on the first side of and spaced apart from the wafer. A second electrically conductive ring is spaced apart from the wafer. An electrically conductive liner surrounds the outer edge of the wafer. A switch is between the liner and ground, allowing the liner to be switched from being grounded to floating.
摘要:
A method for etching a bevel edge of a substrate is provided. A patterned photoresist mask is formed over the etch layer. The bevel edge is cleaned comprising providing a cleaning gas comprising at least one of a CO2, CO, CxHy, H2, NH3, CxHyFz and a combination thereof, forming a cleaning plasma from the cleaning gas, and exposing the bevel edge to the cleaning plasma. Features are etched into the etch layer through the photoresist features and the photoresist mask is removed.
摘要:
A method for forming copper on a substrate including inputting a copper source solution into a mixer, inputting a reducing solution into the mixer, mixing copper source solution and the reducing solution to form a plating solution having a pH of greater than about 6.5 and applying the plating solution to a substrate, the substrate including a catalytic layer wherein applying the plating solution to the substrate includes forming a catalytic layer, maintaining the catalytic layer in a controlled environment and forming copper on the catalytic layer. A system for forming copper structures is also disclosed.