摘要:
Embodiments of the present invention generally relate to a method and apparatus for planarizing a substrate by electropolishing techniques. Certain embodiments of an electropolishing apparatus include a contact ring adapted to support a substrate, a cell body adapted to hold an electropolishing solution, a fluid supply system adapted to provide the electropolishing solution to the cell body, a cathode disposed within the cell body, a power supply system in electrical communication with the contact ring and the cathode, and a controller coupled to at least the fluid supply system and the power supply system. The controller may be adapted to provide a first set of electropolishing conditions to form a boundary layer between the substrate and the electropolishing solution to an initial thickness and may be adapted to provide a second set of electropolishing conditions to control the boundary layer to a subsequent thickness less than or equal to the initial thickness.
摘要:
A method of measuring a concentration of conductive species in an aqueous system is disclosed. In one embodiment, the method comprises providing an electrochemical cell wherein the electrochemical cell has a cell resistance that varies with a concentration of conductive species and determining a relationship between the cell resistance of the electrochemical cell and the concentration of conductive species. The method further comprises measuring one or more electrochemical parameters of the electrochemical cell and determining a test concentration of conductive species based upon the one or more measured electrochemical parameters. Also disclosed is a system for electroplating a material layer on a substrate. The system comprises an electroplating apparatus for electroplating a material layer on a substrate, an electrochemical sensing device capable of measuring a cell resistance of the electroplating bath and one or more material storage reservoirs capable of delivering one or more materials to the electrochemical plating bath.
摘要:
Methods, compositions, and apparatus are provided for planarizing conductive materials disposed on a substrate surface by an chemical polishing technique. In one aspect, a substrate having conductive material disposed thereon is disposed on a substrate support and exposed to a composition containing an oxidizing agent and an inorganic etchant. The substrate is planarized by the composition without the presence of mechanical abrasion. The substrate may optionally be rotated, agitated, or both during exposure to the composition. The method removes conductive materials forming protuberances on the substrate surface at a higher rate than conductive materials forming recesses on the substrate surface.
摘要:
Embodiments of the invention generally provide an apparatus and method for replenishing organic molecules in an electroplating bath. The replenishment process of the present invention may occur on a real-time basis, and therefore, the concentration of organics minimally varies from desired concentration levels. The replenishment method generally includes conducting pre-processing depletion measurements in order to determine organic depletion rates per current density applied in the electroplating system. Once the organic depletion rates per current density are determined, these depletion rates may be applied to an electroplating processing recipe to calculate the volume of organic depletion per recipe step. The calculated volume of organic depletion per recipe step may then be used to determine the volume of organic molecule replenishment per unit of time that is required per recipe step in order to maintain a desired concentration of organics in the plating solution. The calculated replenishment volume may then be added to the processing recipe so that the replenishment process may occur at real-time during processing periods. The apparatus generally includes a selectively actuated valve in communicaiton with a fluid delivery line, wherein the valve is configured to fluidly isolate a plating cell during a non-processing time period. The valve may be controlled by a system controller, and thus, the fluid level in the cell may be controlled during a non-processing time period.
摘要:
Embodiments of the invention provide a method of plating a copper film on a substrate in an electrochemical plating apparatus. The method includes positioning a substrate in an electrolyte solution, applying a current between the substrate and an anode to generate a current density of between about 10 mA/cm2 and about 40 mA/cm2 on the substrate surface, rotating the, substrate at a rotational speed of between about 20 rpm and about 50 rpm, and plating a copper film having a sheet resistance of less than about 16.5null10null2 Ohms/cm2. Embodiments of the invention further provide a copper film plated onto a semiconductor substrate, wherein the film has improved electromigration and stress characteristics
摘要翻译:本发明的实施例提供了一种在电化学电镀装置中在基板上镀覆铜膜的方法。 该方法包括将基板定位在电解质溶液中,在基板和阳极之间施加电流,以在基板表面上产生约10mA / cm 2至约40mA / cm 2之间的电流密度,旋转基板 速度为约20rpm至约50rpm,并且电镀具有小于约16.5×10-2欧姆/ cm 2的薄层电阻的铜膜。 本发明的实施例还提供了镀在半导体衬底上的铜膜,其中该膜具有改善的电迁移和应力特性
摘要:
Generally, a method and apparatus for electrochemical polishing a metal layer disposed on a substrate is provided. In one embodiment, the electrochemical polishing apparatus generally includes a substrate support having a plurality of contact members, a cathode and at least one nozzle. The nozzle is adapted to centrally dispose a polishing fluid on the substrate supported by the substrate support. The cathode is adapted to couple the polishing fluid to a negative terminal of a power source. A positive terminal of the power source is electrically coupled through the contact members to the conductive layer of the substrate. The nozzle creates a turbulent flow in the portion of the polishing fluid boundary layer proximate the center of the substrate which enhances the polishing rate at the center of the substrate.
摘要:
An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a nullpatchnull of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer. In one embodiment, the conductive material is deposited over the catalytic layer by electroless deposition. In another embodiment, the conductive material is deposited over the catalytic layer by electroless deposition followed by electroplating or followed by chemical vapor deposition. In still another embodiment, the conductive material is deposited over the catalytic layer by electroplating or by chemical vapor deposition.
摘要:
A method and system of processing a semiconductor substrate includes, in one or more embodiments, depositing a protective layer on the substrate surface comprising a conductive element disposed in a dielectric material; processing the protective layer to expose the conductive element; electrolessly depositing a metallic passivating layer onto the conductive element; and removing at least a portion of the protective layer from the substrate after electroless deposition. In another aspect, a method and system of processing a semiconductor includes depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, removing the unmasked passivating layer, and removing the mask from the passivating layer.
摘要:
A method for plating a homogenous copper-palladium alloy. The method includes providing a plating solution to an electrochemical plating cell. The plating solution includes a copper ion source at a concentration of between about 0.1 M and about 1.0 M and a palladium ion source at a concentration of between about 0.0005 M and about 0.1 M. The method further includes supplying an electrical deposition bias to a plating surface. The electrical deposition bias is configured to simultaneously deposit copper ions and palladium ions onto the plating surface.
摘要:
A method for depositing a passivation layer on a substrate surface using one or more electroplating techniques is provided. Embodiments of the method include selectively depositing an initiation layer on a conductive material by exposing the substrate surface to a first electroless solution, depositing a passivating material on the initiation layer by exposing the initiation layer to a second electroless solution, and cleaning the substrate surface with an acidic solution. In another aspect, the method includes applying ultrasonic or megasonic energy to the substrate surface during the application of the acidic solution. In still another aspect, the method includes using the acidic solution to remove between about 100 null and about 200 null of the passivating material. In yet another aspect, the method includes cleaning the substrate surface with a first acidic solution prior to the deposition of the initiation layer.