Abstract:
Embodiments of the present disclosure generally relate to semiconductor processing, and specifically to methods and apparatus for surface modification of substrates. In an embodiment, a substrate modification method is provided. The method includes positioning a substrate within a processing chamber; and depositing a material on a portion of the substrate by a deposition process, wherein the deposition process comprises: thermally heating the substrate to a temperature of less than about 500° C.; delivering a first electromagnetic energy from an electromagnetic energy source to the substrate to modify a first region of the substrate, the first region of the substrate being at or near an upper surface of the substrate; and depositing a first material on the first region while delivering the first electromagnetic energy.
Abstract:
Generally, examples described herein relate to methods and processing chambers and systems for forming a stacked pixel structure using epitaxial growth processes and device structures formed thereby. In an example, a first sensor layer is epitaxially grown on a crystalline surface on a substrate. A first isolation structure is epitaxially grown on the first sensor layer. A second sensor layer is epitaxially grown on the first isolation structure. A second isolation structure is epitaxially grown on the second sensor layer. A third sensor layer is epitaxially grown on the second isolation structure.
Abstract:
Embodiments of the present invention generally relate to apparatus for and methods of measuring and monitoring the temperature of a substrate having a 3D feature thereon. The apparatus include a light source for irradiating a substrate having a 3D feature thereon, a focus lens for gathering and focusing reflected light, and an emissometer for detecting the emissivity of the focused reflected light. The apparatus may also include a beam splitter and an imaging device. The imaging device provides a magnified image of the diffraction pattern of the reflected light. The method includes irradiating a substrate having a 3D feature thereon with light, and focusing reflected light with a focusing lens. The focused light is then directed to a sensor and the emissivity of the substrate is measured. The reflected light may also impinge upon an imaging device to generate a magnified image of the diffraction pattern of the reflected light.
Abstract:
Implementations described herein provide apparatus and methods for laser-assisted deposition of films while forming electronic devices. In one implementation, a method for depositing a layer on one or more substrates is provided. The method comprises flowing a deposition precursor gas across a surface of the one or more substrates disposed within a processing volume of a processing chamber, thermally activating the deposition precursor gas to deposit a material layer on the surface of the one or more substrates, dissociating an etch precursor gas in a gas activation cell by exposing the etch precursor gas to photons from an energy source assembly having a wavelength selected for pyrolytic dissociation of the etch precursor gas and introducing the dissociated etch precursor gas into the processing volume to etch at least a portion of the material layer from the surface of the one or more substrates.
Abstract:
A method and apparatus for forming a crystalline semiconductor layer on a substrate are provided. A semiconductor layer is formed by vapor deposition. A pulsed laser melt/recrystallization process is performed to convert the semiconductor layer to a crystalline layer. Laser, or other electromagnetic radiation, pulses are formed into a pulse train and uniformly distributed over a treatment zone, and successive neighboring treatment zones are exposed to the pulse train to progressively convert the deposited material to crystalline material.
Abstract:
A method and apparatus for annealing semiconductor substrates is disclosed. The apparatus has an annealing energy source and a substrate support, with a shield member disposed between the annealing energy source and the substrate support. The shield member is a substantially flat member having a dimension larger than a substrate processed on the substrate support, with a window covering a central opening in the substantially flat member. The central opening has a gas inlet portal and a gas outlet portal, each in fluid communication with a gas inlet plenum and gas outlet plenum, respectively. A connection member is disposed around the central opening and holds the window over the central opening. Connection openings in the connection member are in fluid communication with the gas inlet plenum and gas outlet plenum, respectively, through a gas inlet conduit and a gas outlet conduit formed through the connection member.
Abstract:
Embodiments described herein relate to apparatus and methods of thermal processing. More specifically, apparatus and methods described herein relate to laser thermal treatment of semiconductor substrates by increasing the uniformity of energy distribution in an image at a surface of a substrate.
Abstract:
The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. Typically, the anneal regions may be square or rectangular in shape. Generally, the optical system and methods of the present invention are used to preferentially anneal one or more regions found within the anneal regions by delivering enough energy to cause the one or more regions to re-melt and solidify.
Abstract:
Embodiments described herein relate to apparatus and methods of thermal processing. More specifically, apparatus and methods described herein relate to laser thermal treatment of semiconductor substrates by increasing the uniformity of energy distribution in an image at a surface of a substrate.
Abstract:
Embodiments described herein provide methods and apparatus for thermally treating a substrate. A first radiant energy source that delivers a first radiation at a first fluence and a second radiant energy source that delivers a second radiation at a second fluence are disposed to direct energy toward a substrate support positioned to receive the first radiation at a first location and the second radiation at a second location, wherein the first fluence is 10 to 100 times the second fluence and the first radiation cannot reach the second location. The first radiant energy source may be a laser, and the second radiant energy source may be a plurality of lasers, for example a pulsed laser assembly with a plurality of pulsed lasers. The second radiant energy source may also be a flash lamp. The first and second radiant energy sources may be in the same chamber or different chambers.