Abstract:
A gas sensor includes a light receiving element, a light emitting element, an integrated circuit, a lead frame, and a sealing member configured to seal these into a package. The lead frame includes at least one die pad portion and a plurality of terminal portions, the die pad portion includes a first region having a first thickness and a second region having a second thickness thinner than the first thickness, the integrated circuit is arranged on the second region of the die pad portion, the light emitting element is electrically connected to at least one of the plurality of terminal portions, the light receiving element is electrically connected to the integrated circuit and is arranged on the opposite side to the light emitting element with the integrated circuit interposed therebetween, and the integrated circuit is electrically connected to at least one of the plurality of terminal portions.
Abstract:
A photoelectric conversion element includes a semiconductor module (21) including a semiconductor element member (10) and a seal (20) covering a side of the semiconductor element member, the semiconductor element member including a light emission/irradiation surface (10a) configured to emit or be irradiated by light, a semiconductor substrate (111), a semiconductor layer (112), and an electrode (113), and an insulating layer (31) provided on one surface of the semiconductor module and covering a redistribution wire of the electrode and of an external connection terminal. The insulating layer includes a first insulating layer (311) and a second insulating layer (312) with the redistribution wire provided therebetween and is formed so as not to cover at least a portion of the semiconductor layer, or so as to cover at least a portion of the semiconductor layer thinly as compared to the thickness of the insulating layer that covers the redistribution wire.
Abstract:
An infrared-sensor filter member includes an optical filter disposed in an opening portion of a second member and a first member. The infrared-sensor filter member includes a recess portion formed from a light-incident surface of the optical filter and the first member. At least a part of a bottom surface of the recess portion is formed by the light-incident surface and side walls of the recess portion, which are formed by the first member.
Abstract:
Provided is a gas sensor that can suppress characteristic variation caused by deformation of a semiconductor substrate. The gas sensor (1) includes a substrate (redistribution layer 30), a light-emitting element (11) provided at a front surface (30a) or embedded in the substrate, a light-receiving element (12) that is provided at the front surface or embedded in the substrate and that receives light emitted from the light-emitting element, and a plurality of external connection terminals (40) at a rear surface (30b) that is an opposite surface to the front surface of the substrate. At least a portion of the plurality of external connection terminals is electrically connected to the light-emitting element and the light-receiving element. The plurality of external connection terminals is arranged such that, in plan view, the light-emitting element and the light-receiving element are not present on a line linking any two external connection terminals.
Abstract:
PROBLEM TO BE SOLVED: To reduce an influence on an optical device caused by stress variation on a resin sealing body due to an environmental change and similar change.SOLUTION: An optical device includes a substrate 11, a semiconductor lamination portion formed on the substrate 11 and configured to receive or emit a light, a protective layer 3 that has a shape to cover an entire surface of the semiconductor lamination portion, a mold resin 6 configured to seal the protective layer 3 and the substrate 11 excluding a surface of the substrate 11 on an opposite side of a surface on which the semiconductor lamination portion is formed. The light is entered or emitted from a side of the substrate 11, and the mold resin 6 includes a through hole 61 configured to pass through from a top surface of the mold resin 6 to the protective layer 3. A deformation of the mold resin 6 is reduced by the protective layer 3 and the through hole 61. Then, stress variation acting on an active portion 12 including the semiconductor lamination portion can be reduced.
Abstract:
A gas detection apparatus (100) includes a first layer (1) and a second layer (2) disposed opposite the first layer (1) in a predetermined direction (z-axis direction). The first layer (1) includes a light emitter that emits light and a light receiver that receives the light after the light passes through a waveguide. The second layer (2) includes a light input unit of the waveguide opposite the light emitter in the predetermined direction (z-axis direction) and a light output unit of the waveguide opposite the light receiver in the predetermined direction (z-axis direction). The gas detection apparatus (100) can be miniaturized.
Abstract:
A current sensor (current detection device) 100 includes a conductor 10 through which measurement-target current flows, a magnetic sensor 30 that detects magnetic fields generated by current flowing through the conductor and a package 60 that, together with at least part of the conductor, separates the magnetic sensor from the conductor and covers and seals in their outer surfaces. Together with a curved portion 13 of the conductor, the package separates, from the conductor through which measurement-target current flows, the magnetic sensor that detects magnetic fields generated by current flowing through the conductor and covers and seals in their outer surfaces so that an interface that can spread in the package, in which the magnetic sensor is embedded, from its boundaries with it is not formed; therefore, a high withstand voltage can be obtained.
Abstract:
A gas sensor includes a light receiving element, a light emitting element, an integrated circuit, a lead frame, and a sealing member configured to seal these into a package. The lead frame includes at least one die pad portion and a plurality of terminal portions, the die pad portion includes a first region having a first thickness and a second region having a second thickness thinner than the first thickness, the integrated circuit is arranged on the second region of the die pad portion, the light emitting element is electrically connected to at least one of the plurality of terminal portions, the light receiving element is electrically connected to the integrated circuit and is arranged on the opposite side to the light emitting element with the integrated circuit interposed therebetween, and the integrated circuit is electrically connected to at least one of the plurality of terminal portions.
Abstract:
Provided are an optical device that is a small and thin optical device including a redistribution layer and has high light emitting efficiency and light receiving efficiency, and a method for manufacturing the optical device. An optical device includes: a photoelectric conversion element configured to include a semiconductor substrate, a semiconductor layer capable of receiving or emitting light, and electrodes; a sealing portion configured to expose a surface of the photoelectric conversion element on the opposite side to an electrode-formed surface of the photoelectric conversion element on which the electrodes are formed; a redistribution layer configured to include a reflecting portion disposed in a region in which, when viewed in plan, the semiconductor layer and the electrodes do not overlap each other and configured to reflect the light to a side on which the semiconductor layer is located; and external connection terminals configured to be coupled to the redistributions.
Abstract:
A filter member includes a first lead terminal, an optical filter, and a first mold member, and a light incidence surface and a light emission surface of the optical filter is exposed from the first mold member. A sensor member includes an IR sensor element, a second lead terminal and a second mold member. A light-receiving surface of the IR sensor element is exposed from the second mole member. The filter member is disposed on the sensor member so that the light emission surface of the optical filter faces the light-receiving surface of the IR sensor element in the sensor member.