ARTIFACT AS A FEATURE IN NEURO DIAGNOSTICS
    1.
    发明申请
    ARTIFACT AS A FEATURE IN NEURO DIAGNOSTICS 审中-公开
    作为神经病学诊断的特征

    公开(公告)号:US20160029965A1

    公开(公告)日:2016-02-04

    申请号:US14777012

    申请日:2014-03-12

    发明人: Adam J. SIMON

    IPC分类号: A61B5/00 A61B5/16 A61B5/0476

    摘要: A multi-modal physiological assessment device and method enables the simultaneous recording and then subsequent analysis of multiple data streams of biological signal measurements to assess the health and function of the brain. Means and methods are provided to identify and leverage artifact samples within ID and 2D bio signal data streams to help create more accurate predictors and classifiers of brain health states and conditions. One sensor's data is used to gate the relevant portion of another bio sensor's data in order to reduce the noise and increase the signal-to-noise ratio. This is a form of phase locking for multimodal data streams for brain health assessment.

    摘要翻译: 多模式生理评估装置和方法能够同时记录并随后分析生物信号测量的多个数据流,以评估大脑的健康和功能。 提供了方法和方法来识别和利用ID和2D生物信号数据流中的伪像样本,以帮助创建更准确的脑健康状态和状况的预测因子和分类器。 一个传感器的数据用于选通另一个生物传感器数据的相关部分,以便降低噪声并提高信噪比。 这是用于大脑健康评估的多模态数据流的锁相形式。

    SYSTEM FOR THE DISTRIBUTED COLLECTION OF BRAIN HEALTH INFORMATION

    公开(公告)号:US20170193164A1

    公开(公告)日:2017-07-06

    申请号:US15325243

    申请日:2015-07-10

    申请人: CERORA, INC..

    IPC分类号: G06F19/00

    摘要: A system is provided for collecting medical data about a subject between visits to a health care professional. The system includes a medical records database that stores patient data for access by the health care professional and an interactive and distributed data collection system provided to a team of collaborators (doctors, parents, teachers, etc.) who are to collect data about the subject between visits to a health professional. The data collection system includes a plurality of mobile computing devices implementing a software application adapted to periodically collect symptoms data and activity data about the subject in response to prompts relating to the subject's condition, to enable chat discussions amongst the team of collaborators about the symptons and activities of the subject, and to periodcally forward the collected data in a report to the medical records database.

    MULTI-MODAL PHARMACO-DIAGNOSTIC ASSESSMENT OF BRAIN HEALTH
    5.
    发明申请
    MULTI-MODAL PHARMACO-DIAGNOSTIC ASSESSMENT OF BRAIN HEALTH 审中-公开
    多元模型药物诊断脑损伤诊断

    公开(公告)号:US20160022206A1

    公开(公告)日:2016-01-28

    申请号:US14773872

    申请日:2014-03-14

    IPC分类号: A61B5/00 A61B19/00

    摘要: A single diagnostic dose of a chemical agent that can bind with molecular specificity or provide a well characterized molecular effect on a mammalian host (including humans) is provided to a patient between brain scans. The method typically comprises at least one pre-dose scan of the subject followed by a waiting period then a second post-dose diagnostic scan. The diagnostic scans can be conventional in nature or of a multi-modal variety. A comparison, in the form of a difference or ratio, between data or extracted features before versus after the diagnostic dose indicates with molecular specificity the tone in the brain of that subject. The resulting data may be used to assess instances of medical fraud and can be used in back to work decisions for brain and soft tissue injuries for which the determinations have traditionally been somewhat subjective in nature.

    摘要翻译: 在大脑扫描之间向患者提供可以分子特异性结合或提供对哺乳动物宿主(包括人类)的良好表征的分子作用的化学试剂的单一诊断剂量。 该方法通常包括对受试者的至少一次剂量前扫描,之后是等待时间,然后进行第二次剂量后诊断扫描。 诊断扫描本质上可以是常规的或多模态的。 在差异或比例的形式之间,在诊断剂量之前和之后的数据或提取特征之间的比较以分子特异性表示该受试者的脑中的音调。 所得到的数据可用于评估医疗欺诈的实例,并且可以用于脑和软组织损伤的返回工作决定,其中测定在传统上本质上具有主观性。

    STOCHASTIC OSCILLATOR ANALYSIS IN NEURO DIAGNOSITCS
    8.
    发明申请
    STOCHASTIC OSCILLATOR ANALYSIS IN NEURO DIAGNOSITCS 审中-公开
    神经元诊断中的STOCHASTIC振荡器分析

    公开(公告)号:US20170032098A1

    公开(公告)日:2017-02-02

    申请号:US15302535

    申请日:2015-04-07

    IPC分类号: G06F19/00 A61B5/0476 A61B5/00

    摘要: A system and method for modeling bio-signals in the form of non-linear stochastic oscillators by extracting time series data from a subject into a series of summary fit parameters and comparing the unknown fit parameters to a set of normative fit parameters to determine whether the subject should be included in a group or not. The method includes data collection, feature extraction and then comparison of fit parameters from a non-linear stochastic oscillator model to a normative standard to make the in or out determination for a particular group. The system includes a processor programmed to perform the steps of the method.

    摘要翻译: 一种用非线性随机振荡器形式对生物信号进行建模的系统和方法,其通过从受试者提取时间序列数据为一系列概要拟合参数,并将未知拟合参数与一组规范拟合参数进行比较,以确定是否 主题应该包括在一个群组中。 该方法包括从非线性随机振荡器模型到规范标准的数据采集,特征提取,然后比较拟合参数,以对特定组进行进出确定。 该系统包括被编程为执行该方法的步骤的处理器。

    WAVELET ANALYSIS IN NEURO DIAGNOSTICS
    9.
    发明申请
    WAVELET ANALYSIS IN NEURO DIAGNOSTICS 审中-公开
    神经诊断中的波形分析

    公开(公告)号:US20160029946A1

    公开(公告)日:2016-02-04

    申请号:US14777030

    申请日:2014-03-14

    IPC分类号: A61B5/00 A61B5/04 A61B5/0476

    摘要: A method of extracting brain frequency sub bands corresponding to a medical condition such as Alzheimer's Disease from EEG time series data of a patient includes the steps of applying wavelet transforms to the EEG time series data to generate a continuous wavelet transformation time series at each wavelet scale, calculating Wavelet Entropy (WE) and Sample Entropy (SE) directly from the Continuous Wavelet Transformation time series at each wavelet scale, calculating arithmetic or geometric means and accumulations across scale ranges of interest; and selecting data from major brain frequency sub-bands as candidate sets of extraction features for analysis as a diagnostic signature for the medical condition. Diagnostic signatures for Alzheimer's disease are found when values of WE or SE are in certain ranges when EEG data is collected and analyzed in connection with certain analytical tasks such as an Eyes Open task.

    摘要翻译: 从患者的EEG时间序列数据中提取对应于诸如阿尔茨海默病等医学状况的脑频率子带的方法包括以下步骤:将小波变换应用于EEG时间序列数据,以在每个小波尺度产生连续的小波变换时间序列 ,从每个小波尺度的连续小波变换时间序列直接计算小波熵(WE)和采样熵(SE),计算各种尺度范围内的算术或几何平均值和积分; 并且从主要脑频率子带选择数据作为用于分析的提取特征的候选集合作为医疗状况的诊断签名。 当EEG数据收集和分析与某些分析任务如眼睛打开任务相关联时,可以发现阿尔茨海默病的诊断特征,当WE或SE的值在一定范围内。