摘要:
Embodiments are directed to methods for forming multi-layer three-dimensional structures involving the joining of at least two structural elements, at least one of which is formed as a multi-layer three-dimensional structure, wherein the joining occurs via one of: (1) elastic deformation and elastic recovery and subsequent retention of elements relative to each other, (2) relative deformation of an initial portion of at least one element relative to another portion of the at least one element until the at least two elements are in a desired retention position after which the deformation is reduced or eliminated and a portion of at least one element is brought into position which in turn locks the at least two elements together via contact with one another including contact with the initial portion of at least one element, or (3) moving a retention region of one element into the retention region of the other element, without deformation of either element, along a path including a loading region of the other element and wherein during normal use the first and second elements are configured relative to one another so that the loading region of the second elements is not accessible to the retention region of the first element.
摘要:
Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of the tip material around carefully sized and placed etching shields, via hot pressing, and the like.
摘要:
Embodiments are directed to microneedle array devices for intradermal and/or transdermal interaction with the body of patient to provide therapeutic, diagnostic or preventative treatment wherein portions of the devices may be formed by multi-layer, multi-material electrochemical fabrication methods and wherein individual microneedles may include valve elements or other elements for controlling interaction (e.g. fluid flow). In some embodiments needles are retractable and extendable from a surface of the device. In some embodiments, interaction occurs automatically with movement across the skin of the patient while in other embodiments interaction is controlled by an operator (e.g. doctor, nurse, technician, or patient).
摘要:
Embodiments of the present invention are directed to the formation of microprobe tips elements having a variety of configurations. In some embodiments tips are formed from the same building material as the probes themselves, while in other embodiments the tips may be formed from a different material and/or may include a coating material. In some embodiments, the tips are formed before the main portions of the probes and the tips are formed in proximity to or in contact with a temporary substrate. Probe tip patterning may occur in a variety of different ways, including, for example, via molding in patterned holes that have been isotropically or anisotropically etched silicon, via molding in voids formed in over exposed photoresist, via molding in voids in a sacrificial material that have formed as a result of the sacrificial material mushrooming over carefully sized and located regions of dielectric material, via isotropic etching of a the tip material around carefully sized placed etching shields, via hot pressing, and the like.
摘要:
Embodiments of the invention provide electrochemical fabrication processes that may be used for the fabrication of space transformers or the co-fabrication of microprobe arrays along with one or more space transformers.
摘要:
Embodiments of the invention provide fabrication processes for the co-fabrication of microprobe arrays along with one or more space transformers wherein the fabrication processes include the forming and adhering of a plurality of layers to previously formed layers and wherein at least a portion of the plurality of layers are formed from at least one structural material and at least one sacrificial material that is at least in part released from the plurality of layers after formation and wherein the space transformer includes a plurality of interconnect elements that connect one side to the array of probes that has a first spacing to another side that has a second spacing where the second spacing is greater than the first spacing. In some embodiments, the fabrication process includes a plurality of electrodeposition operations.
摘要:
Embodiments of the invention provide methods for packaging integrated circuits and/or other electronic components with electrochemically fabricated structures which include conductive interconnection elements. In some embodiments the electrochemically produced structures are fabricated on substrates that include conductive vias while in other embodiments, the substrates are solid blocks of conductive material, or conductive material containing passages that allow the flow of fluid to maintain desired thermal properties of the packaged electronic components.
摘要:
Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
摘要:
Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.