Abstract:
There is presently provided a suspension of immiscible particles in a solution, wherein the particles comprise an agglomeration of a bioactive agent, for example an anti-cancer agent; and a plurality of conjugates of a hyaluronic acid and a flavonoid, for example a catechin-based flavonoid, wherein the particles are on average from about 15 nm to about 300 nm in diameter and wherein the bioactive agent is releasably retained in the particles by the flavonoid. The suspension is useful for delivery of the bioactive agent to cells, including cancer cells. There are also provided a therapeutic formulation comprising the suspension, as well as methods for using the suspension and therapeutic formulation, including for delivery of a bioactive agent to a cell and for treating a disease, including cancer.
Abstract:
There are provided methods for producing a hydrogel that is capable of adhesion of cells and which comprises enzymatically cross-linked conjugates of a hydrogel forming agent and a flavonoid, formed from a reaction using peroxide and peroxidase. Hydrogels produced by such methods and methods of using the hydrogels are also provided.
Abstract:
There is provided polymer-flavonoid conjugates. Flavonoid-grafted and flavonoid-terminated polymer conjugates are disclosed according to the invention. The linkage of flavonoids to the polymers has been achieved via thiol linkages. The inventive processes allow for making of the conjugates in high yield avoiding complex purification steps. The conjugates can be easily autoxidized to hydrogels with uses in many biomedical applications where a higher stability of the flavonoid is necessary. The hydrogels can be potentially used as viscosupplement, anti-adhesion film or dermal filler.
Abstract:
There is provided a polymer-flavonoid conjugate, or a pharmaceutically acceptable salt thereof, uses thereof, and methods of making thereof. The disclosed polymer-flavonoid conjugates may be useful in the therapeutic and/or prophylactic treatment of a joint condition in a subject.
Abstract:
There is provided a nanocomplex having a core-shell structure. The shell of the nanocomplex comprises a functionalized hyaluronic acid while the core of the nanocomplex comprises a flavonoid encapsulating a metal-containing compound. Preferably, the flavonoid is epigallocatechin gallate (EGCG) and the hyaluronic acid is thiol-functionalized and subsequently conjugated to the flavonoid. There is also provided a method of forming the nanocomplex, a pharmaceutical composition comprising the nanocomplex, medical uses of the nanocomplex and a method of treating a patient, preferably with cancer using the nanocomplex.
Abstract:
There is provided a conjugate of a delivery agent containing a chemical moiety and at least one flavonoid. The flavonoid exists in a monomeric form or dimeric form before conjugation and remains in the monomeric form or dimeric form after conjugation. Preferably, the conjugate comprises two flavonoids. The delivery agent is conjugated at the C6 and/or the C8 position of the A ring of the flavonoid. An anti-cancer agent delivery vehicle comprising an anti-cancer agent and the conjugate is also provided.
Abstract:
There is provided methods for producing a hydrogel comprising conjugates of a hydrogel forming agent and a flavonoid including a method for producing a hydrogel that is capable of adhesion of cells and which comprises enzymatically cross-linked conjugates of a hydrogel forming agent and a flavonoid. There is also provided a method for producing a hydrogel comprising conjugates of a hydrogel forming agent and a flavonoid without the addition of an exogenous peroxide or peroxidase or without the addition of an exogenous peroxide. Hydrogels produced by such methods and methods of using the hydrogels are also described herein.
Abstract:
There is provided a nanocomplex having a core-shell structure. The shell of the nanocomplex comprises a functionalized hyaluronic acid while the core of the nanocomplex comprises a flavonoid encapsulating a metal-containing compound. Preferably, the flavonoid is epigallocatechin gallate (EGCG) and the hyaluronic acid is thiol-functionalized and subsequently conjugated to the flavonoid. There is also provided a method of forming the nanocomplex, a pharmaceutical composition comprising the nanocomplex, medical uses of the nanocomplex and a method of treating a patient, preferably with cancer using the nanocomplex.
Abstract:
The present disclosure relates to a polymeric system for release of an active agent, comprising a first polymeric phase containing the active agent, the first polymeric phase forming discrete regions of a set size range and being dispersed within a second polymeric phase comprising a cross-linked polymer-phenol conjugate for release of the active agent therein. The present disclosure further provides an injectable hydrogel comprising the disclosed polymeric system, a carrier for delivering a biologically active substance or a drug comprising the injectable hydrogel, and a method for producing the disclosed polymeric system.
Abstract:
The present disclosure relates to a polymeric system for release of an active agent, comprising a first polymeric phase containing the active agent, the first polymeric phase forming discrete regions of a set size range and being dispersed within a second polymeric phase comprising a cross-linked polymer-phenol conjugate for release of the active agent therein. The present disclosure further provides an injectable hydrogel comprising the disclosed polymeric system, a carrier for delivering a biologically active substance or a drug comprising the injectable hydrogel, and a method for producing the disclosed polymeric system.