Deposition and densification process for titanium nitride barrier layers
    1.
    发明授权
    Deposition and densification process for titanium nitride barrier layers 失效
    氮化钛阻挡层的沉积和致密化过程

    公开(公告)号:US07838441B2

    公开(公告)日:2010-11-23

    申请号:US12426815

    申请日:2009-04-20

    IPC分类号: H01L21/768

    摘要: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    摘要翻译: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约15埃的厚度,氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位。

    Deposition and densification process for titanium nitride barrier layers
    2.
    发明授权
    Deposition and densification process for titanium nitride barrier layers 失效
    氮化钛阻挡层的沉积和致密化过程

    公开(公告)号:US07521379B2

    公开(公告)日:2009-04-21

    申请号:US11869557

    申请日:2007-10-09

    IPC分类号: H01L21/44 H01L21/469

    摘要: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    摘要翻译: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约15埃的厚度,并且氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位。

    Atomic layer deposition of tungsten materials
    6.
    发明授权
    Atomic layer deposition of tungsten materials 有权
    原子层沉积钨材料

    公开(公告)号:US08211799B2

    公开(公告)日:2012-07-03

    申请号:US13160378

    申请日:2011-06-14

    IPC分类号: H01L21/44

    摘要: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.

    摘要翻译: 本发明的实施方案提供了一种沉积含钨材料的方法。 在一个实施例中,一种方法包括在设置在衬底上的底层上形成钨成核层,同时在原子层沉积(ALD)工艺期间依次提供钨前体和还原气体到处理室中,并在其上沉积钨体积层 钨成核层,其中所述还原气体包含氢气和氢化物化合物(例如乙硼烷),并且具有约500:1或更高的氢/氢化物流速比。 在一些实例中,该方法包括以约1slm至约20slm的流速将氢气流入处理室,并将氢化物化合物和载气的混合物以流速流动到处理室中 在约50sccm至约500sccm的范围内。

    Atomic layer deposition of tungsten materials
    8.
    发明授权
    Atomic layer deposition of tungsten materials 有权
    原子层沉积钨材料

    公开(公告)号:US08513116B2

    公开(公告)日:2013-08-20

    申请号:US13491191

    申请日:2012-06-07

    IPC分类号: H01L21/285

    摘要: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.

    摘要翻译: 本发明的实施方案提供了一种沉积含钨材料的方法。 在一个实施例中,一种方法包括在设置在衬底上的底层上形成钨成核层,同时在原子层沉积(ALD)工艺期间依次提供钨前体和还原气体到处理室中,并在其上沉积钨体积层 钨成核层,其中所述还原气体包含氢气和氢化物化合物(例如乙硼烷),并且具有约500:1或更高的氢/氢化物流速比。 在一些实例中,该方法包括以约1slm至约20slm的流速将氢气流入处理室,并将氢化物化合物和载气的混合物以流速流动到处理室中 在约50sccm至约500sccm的范围内。

    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS
    9.
    发明申请
    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS 有权
    原子层沉积材料

    公开(公告)号:US20090053893A1

    公开(公告)日:2009-02-26

    申请号:US12121209

    申请日:2008-05-15

    IPC分类号: H01L21/44

    摘要: Embodiments of the invention provide an improved process for depositing tungsten-containing materials. The process utilizes soak processes and vapor deposition processes, such as atomic layer deposition (ALD) to provide tungsten films having significantly improved surface uniformity and production level throughput. In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes positioning a substrate within a process chamber, wherein the substrate contains an underlayer disposed thereon, exposing the substrate sequentially to a tungsten precursor and a reducing gas to deposit a tungsten nucleation layer on the underlayer during an ALD process, wherein the reducing gas contains a hydrogen/hydride flow rate ratio of about 40:1, 100:1, 500:1, 800:1, 1,000:1, or greater, and depositing a tungsten bulk layer on the tungsten nucleation layer. The reducing gas contains a hydride compound, such as diborane, silane, or disilane.

    摘要翻译: 本发明的实施方案提供了一种用于沉积含钨材料的改进方法。 该方法利用诸如原子层沉积(ALD)的浸泡工艺和气相沉积工艺来提供具有显着改善的表面均匀性和生产水平生产量的钨膜。 在一个实施例中,提供了一种用于在衬底上形成含钨材料的方法,其包括将衬底定位在处理室内,其中衬底包含设置在其上的底层,将衬底依次暴露于钨前体和还原气体 在ALD工艺期间,在底层上沉积钨成核层,其中还原气体含有约40:1,100:1,500:1,800:1,1,000:1或更高的氢氢化物流速比, 以及在钨成核层上沉积钨体层。 还原气体含有氢化物化合物,例如乙硼烷,硅烷或乙硅烷。