摘要:
Methods of forming a silicon carbide semiconductor device are disclosed. The methods include forming a semiconductor device at a first surface of a silicon carbide substrate having a first thickness, and mounting a carrier substrate to the first surface of the silicon carbide substrate. The carrier substrate provides mechanical support to the silicon carbide substrate. The methods further include thinning the silicon carbide substrate to a thickness less the first thickness, forming a metal layer on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate, and locally annealing the metal layer to form an ohmic contact on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate. The silicon carbide substrate is singulated to provide a singulated semiconductor device.
摘要:
Methods of forming a silicon carbide semiconductor device are disclosed. The methods include forming a semiconductor device at a first surface of a silicon carbide substrate having a first thickness, and mounting a carrier substrate to the first surface of the silicon carbide substrate. The carrier substrate provides mechanical support to the silicon carbide substrate. The methods further include thinning the silicon carbide substrate to a thickness less the first thickness, forming a metal layer on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate, and locally annealing the metal layer to form an ohmic contact on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate. The silicon carbide substrate is singulated to provide a singulated semiconductor device.
摘要:
Methods of forming a silicon carbide semiconductor device are disclosed. The methods include forming a semiconductor device at a first surface of a silicon carbide substrate having a first thickness, and mounting a carrier substrate to the first surface of the silicon carbide substrate. The carrier substrate provides mechanical support to the silicon carbide substrate. The methods further include thinning the silicon carbide substrate to a thickness less the first thickness, forming a metal layer on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate, and locally annealing the metal layer to form an ohmic contact on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate. The silicon carbide substrate is singulated to provide a singulated semiconductor device.
摘要:
Methods of forming a silicon carbide semiconductor device are disclosed. The methods include forming a semiconductor device at a first surface of a silicon carbide substrate having a first thickness, and mounting a carrier substrate to the first surface of the silicon carbide substrate. The carrier substrate provides mechanical support to the silicon carbide substrate. The methods further include thinning the silicon carbide substrate to a thickness less the first thickness, forming a metal layer on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate, and locally annealing the metal layer to form an ohmic contact on the thinned silicon carbide substrate opposite the first surface of the silicon carbide substrate. The silicon carbide substrate is singulated to provide a singulated semiconductor device.
摘要:
Methods of forming a semiconductor structure include providing an insulation layer on a semiconductor layer and diffusing cesium ions into the insulation layer from a cesium ion source outside the insulation layer. A MOSFET including an insulation layer treated with cesium ions may exhibit increased inversion layer mobility.
摘要:
A negative bevel edge termination for a Silicon Carbide (SiC) semiconductor device is disclosed. In one embodiment, the negative bevel edge termination includes multiple steps that approximate a smooth negative bevel edge termination at a desired slope. More specifically, in one embodiment, the negative bevel edge termination includes at least five steps, at least ten steps, or at least 15 steps. The desired slope is, in one embodiment, less than or equal to fifteen degrees. In one embodiment, the negative bevel edge termination results in a blocking voltage for the semiconductor device of at least 10 kilovolts (kV) or at least 12 kV. The semiconductor device is preferably, but not necessarily, a thyristor such as a power thyristor, a Bipolar Junction Transistor (BJT), an Insulated Gate Bipolar Transistor (IGBT), a U-channel Metal-Oxide-Semiconductor Field Effect Transistor (UMOSFET), or a PIN diode.
摘要:
A semiconductor device includes a drift layer and a body region that forms a p-n junction with the drift layer. A contactor region is in the body region, and a shunt channel region extends through the body region from the contactor region to the drift layer. The shunt channel region has a length, thickness and doping concentration selected such that: 1) the shunt channel region is fully depleted when zero voltage is applied across the first and second terminals, 2) the shunt channel becomes conductive at a voltages less than the built-in potential of the drift layer to body region p-n junction, and/or 3) the shunt channel is not conductive for voltages that reverse bias the p-n junction between the drift region and the body region.
摘要:
The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.
摘要:
Elements of an edge termination structure, such as multiple concentric guard rings, are effectively doped regions in a drift layer. To increase the depth of these doped regions, individual recesses may be formed in a surface of the drift layer where the elements of the edge termination structure are to be formed. Once the recesses are formed in the drift layer, these areas about and at the bottom of the recesses are doped to form the respective edge termination elements.
摘要:
A negative bevel edge termination for a Silicon Carbide (SiC) semiconductor device is disclosed. In one embodiment, the negative bevel edge termination includes multiple steps that approximate a smooth negative bevel edge termination at a desired slope. More specifically, in one embodiment, the negative bevel edge termination includes at least five steps, at least ten steps, or at least 15 steps. The desired slope is, in one embodiment, less than or equal to fifteen degrees. In one embodiment, the negative bevel edge termination results in a blocking voltage for the semiconductor device of at least 10 kilovolts (kV) or at least 12 kV. The semiconductor device is preferably, but not necessarily, a thyristor such as a power thyristor, a Bipolar Junction Transistor (BJT), an Insulated Gate Bipolar Transistor (IGBT), a U-channel Metal-Oxide-Semiconductor Field Effect Transistor (UMOSFET), or a PIN diode.