摘要:
In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
摘要:
In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
摘要:
A robotic positioning system that cooperates with a sensing system to correct robot motion is provided. The sensing system is decoupled from the sensors used conventionally to control the robot's motion, thereby providing repeatable detection of the robot's true position. In one embodiment, the positioning system includes a robot, a controller, a motor sensor and a decoupled sensor. The robot has at least one motor for manipulating a linkage controlling the displacement of a substrate support coupled thereto. The motor sensor is provides the controller with motor actuation information utilized to move the substrate support. The decoupled sensor provides information indicative of the true position the substrate support that may be utilized to correct the robot's motion.
摘要:
A robotic positioning system that cooperates with a sensing system to correct robot motion is provided. The sensing system is decoupled from the sensors used conventionally to control the robot's motion, thereby providing repeatable detection of the robot's true position. In one embodiment, the positioning system includes a robot, a controller, a motor sensor and a decoupled sensor. The robot has at least one motor for manipulating a linkage controlling the displacement of a substrate support coupled thereto. The motor sensor is provides the controller with motor actuation information utilized to move the substrate support. The decoupled sensor provides information indicative of the true position the substrate support that may be utilized to correct the robot's motion.
摘要:
A substrate heater assembly for supporting a substrate of a predetermined standardized diameter during processing is provided. In one embodiment, the substrate heater assembly includes a body having an upper surface, a lower surface and an embedded heating element. A substrate support surface is formed in the upper surface of the body and defines a portion of a substrate receiving pocket. An annular wall is oriented perpendicular to the upper surface and has a length of at least one half a thickness of the substrate. The wall bounds an outer perimeter of the substrate receiving pocket and has a diameter less than about 0.5 mm greater than the predetermined substrate diameter.
摘要:
A substrate processing system is provided with a processing chamber, an alternating voltage supply, and an impedance matching network. The processing chamber holds a substrate during processing and the alternating voltage supply is connected with the processing chamber to capacitively couple energy to a plasma formed within the processing chamber. The impedance matching network is coupled with the alternating voltage supply and has a variable resistive element and a variable reactive element, whose states respectively define distinct real and imaginary parts of an impedance.
摘要:
A method for depositing an organosilicate layer on a substrate includes varying one or more processing conditions during a process sequence for depositing an organosilicate layer from a gas mixture comprising an organosilicon compound in the presence of RF power in a processing chamber. In one aspect, the distance between the substrate and a gas distribution manifold in the processing chamber is varied during processing. Preferably, the method of depositing an organosilicate layer minimizes plasma-induced damage to the substrate.
摘要:
A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms, to prevent device yield and substrate scrap problems that can affect the cost of ownership of the cluster tool. The flexible and modular architecture allows the user to configure the number of processing chambers, processing racks, and processing robots required to meet the throughput needs of the user.
摘要:
A carrier head for a chemical mechanical polisher includes a base, a substrate mounting surface, an annular inner ring and an outer ring. The inner ring has a lower surface configured to contact an upper surface of a substrate positioned on the substrate mounting surface, an outer surface, and an inwardly facing surface extending downwardly from the lower surface and is configured to circumferentially surround the edge of the substrate, the inner ring vertically movable relative to the substrate mounting surface. The outer ring has an inner surface circumferentially surrounding the inner ring, an outer surface, and a lower surface to contact the polishing pad, and the outer ring is vertically movable relative to and independently of the substrate mounting surface and the inner ring.
摘要:
A method and apparatus for processing substrates using a multi-chamber processing system, or cluster tool, that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. The various embodiments of the cluster tool may utilize two or more robots that are configured in a parallel processing configuration to transfer substrates between the various processing chambers retained in the processing racks so that a desired processing sequence can be performed on the substrates. In one aspect, the parallel processing configuration contains two or more robot assemblies that are adapted to move in a vertical and horizontal directions, to access the various processing chambers retained in generally adjacently positioned processing racks. Generally, the various embodiments described herein are advantageous since each row or group of substrate processing chambers are serviced by two or more robots to allow for increased throughput and increased system reliability. Also, the various embodiments described herein are generally configured to minimize and control the particles generated by the substrate transferring mechanisms, to prevent device yield and substrate scrap problems that can affect the cost of ownership of the cluster tool. The flexible and modular architecture allows the user to configure the number of processing chambers, processing racks, and processing robots required to meet the throughput needs of the user.