摘要:
In various embodiments, a semiconductor component may include a semiconductor layer having a front side and a back side; at least one electronic element formed at least partially in the semiconductor layer; at least one via formed in the semiconductor layer and leading from the front side to the back side of the semiconductor layer; a front side metallization layer disposed over the front side of the semiconductor layer and electrically connecting the at least one electronic element to the at least one via; a cap disposed over the front side of the semiconductor layer and mechanically coupled to the semiconductor layer, the cap being configured as a front side carrier of the semiconductor component; a back side metallization layer disposed over the back side of the semiconductor layer and electrically connected to the at least one via.
摘要:
Exemplary embodiments of a method for producing a semiconductor component having a polycrystalline semiconductor body region are disclosed, wherein the polycrystalline semiconductor body region is produced between the first and second surfaces of the semiconductor body in a semiconductor component section, wherein an electromagnetic radiation having a wavelength of at least 1064 nm is introduced into the semiconductor body in a manner focused onto a position in the semiconductor component section of the semiconductor body and wherein the power density of the radiation at the position is less than 1×108 W/cm2.
摘要翻译:公开了一种用于制造具有多晶半导体体区域的半导体部件的制造方法的实施例,其中在半导体部件部分中在半导体主体的第一和第二表面之间产生多晶半导体本体区域,其中具有波长 至少1064nm的光束以聚焦到半导体主体的半导体部件部分中的位置的方式被引入半导体本体,并且其中该位置处的辐射的功率密度小于1×108W / cm 2。
摘要:
Representative implementations of devices and techniques provide a high-voltage device on a semiconductor substrate. An insulating polymer layer is formed on an opposite surface to the high-voltage device, the insulating polymer layer having a thickness of at least twice that of the semiconductor substrate.
摘要:
A semiconductor device includes a source metallization and a semiconductor body. The semiconductor body includes a first field-effect structure including a source region of a first conductivity type electrically coupled to the source metallization. The semiconductor body also includes a second field-effect structure including a source region of the first conductivity type electrically coupled to the source metallization. A voltage tap including a semiconductor region within the semiconductor body is electrically coupled to a first gate electrode of the first field-effect structure by an intermediate inverter structure.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.