摘要:
In one embodiment, a method of forming a semiconductor device includes forming a first porous semiconductor layer over a top surface of a substrate. A first epitaxial layer is formed over the first porous semiconductor layer. A circuitry is formed within and over the first epitaxial layer. The circuitry is formed without completely oxidizing the first epitaxial layer.
摘要:
A semiconductor device includes a first contact in low Ohmic contact with a source region of the device and a first portion of a body region of the device formed in an active area of the device, and a second contact in low Ohmic contact with a second portion of the body region formed in a peripheral area of the device. The minimum width of the second contact at a first surface of the device is larger than the minimum width of the first contact at the first surface so that maximum current density during commutating the semiconductor device is reduced and thus the risk of device damage during hard commutating is also reduced.
摘要:
A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
摘要:
According to an embodiment, a composite wafer includes a carrier substrate having a graphite layer and a monocrystalline semiconductor layer attached to the carrier substrate.
摘要:
A cavity is etched from a front surface into a semiconductor substrate. After providing an etch stop structure at the bottom of the cavity, the cavity is closed. From a back surface opposite to the front surface the semiconductor substrate is grinded at least up to an edge of the etch stop structure oriented to the back surface. Providing the etch stop structure at the bottom of an etched cavity allows for precisely adjusting a thickness of a semiconductor body of a semiconductor device.
摘要:
A semiconductor device includes a device region. The device region includes at least one device region section including dopant atoms of a first doping type and with a first doping concentration of at least 1E16 cm−3 and dopant atoms of a second doping type and with a second doping concentration of at least 1E16 cm−3.
摘要:
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first conductivity type, and a drift region of the second conductivity type arranged in a semiconductor body. The first and second emitter regions are arranged between the drift region and a first electrode and are each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source region and the body region. A floating parasitic region of the first conductivity type is disposed outside the cell region.
摘要:
A method for protecting a semiconductor device against degradation of its electrical characteristics is provided. The method includes providing a semiconductor device having a first semiconductor region and a charged dielectric layer which form a dielectric-semiconductor interface. The majority charge carriers of the first semiconductor region are of a first charge type. The charged dielectric layer includes fixed charges of the first charge type. The charge carrier density per area of the fixed charges is configured such that the charged dielectric layer is shielded against entrapment of hot majority charge carriers generated in the first semiconductor region. Further, a semiconductor device which is protected against hot charge carriers and a method for forming a semiconductor device are provided.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
A semiconductor device includes a source metallization and a semiconductor body. The semiconductor body includes a first field-effect structure including a source region of a first conductivity type electrically coupled to the source metallization. The semiconductor body also includes a second field-effect structure including a source region of the first conductivity type electrically coupled to the source metallization. A voltage tap including a semiconductor region within the semiconductor body is electrically coupled to a first gate electrode of the first field-effect structure by an intermediate inverter structure.