摘要:
In an embodiment, a method includes: during a first portion of a cycle of a clock signal generated by an oscillator, pre-charging a first capacitor of a first switched capacitor stage until a first comparator determines that a first node voltage of the first switched capacitor stage is greater than a first reference voltage at a first reference voltage node; applying a second reference voltage to the first reference voltage node; and responsive to a first edge of the clock signal, charging the first capacitor until the first comparator determines that the first node voltage is greater than the second reference voltage at the first reference voltage node.
摘要:
In an embodiment, a method includes: during a first portion of a cycle of a clock signal generated by an oscillator, pre-charging a first capacitor of a first switched capacitor stage until a first comparator determines that a first node voltage of the first switched capacitor stage is greater than a first reference voltage at a first reference voltage node; applying a second reference voltage to the first reference voltage node; and responsive to a first edge of the clock signal, charging the first capacitor until the first comparator determines that the first node voltage is greater than the second reference voltage at the first reference voltage node.
摘要:
An input digital signal is converted to an analog signal using a main digital to analog converter (DAC) and a sub DAC. An offset value is subtracted from the input digital signal to generate an offset adjusted digital signal. The main DAC converts the offset adjusted digital signal to a first analog signal. A second digital signal is generated based on the offset value and a correction factor determined, at least in part, during calibration of the main DAC. The sub DAC converts the second digital to a second analog signal, which when combined with the first analog signal, provides an analog representation of the input digital signal.
摘要:
An input digital signal is converted to an analog signal using a main digital to analog converter (DAC) and a sub DAC. An offset value is subtracted from the input digital signal to generate an offset adjusted digital signal. The main DAC converts the offset adjusted digital signal to a first analog signal. A second digital signal is generated based on the offset value and a correction factor determined, at least in part, during calibration of the main DAC. The sub DAC converts the second digital to a second analog signal, which when combined with the first analog signal, provides an analog representation of the input digital signal.
摘要:
A circuit includes a comparator including a first input, a second input, and an output. The circuit further includes a plurality of capacitive sampling circuits configured to be selectively coupled to the first and second inputs. Each of the plurality of capacitive sampling circuits includes first and second capacitors, and includes first and second conversion switches configured to selectively couple the first and second capacitors to the first and second inputs, respectively. The first and second conversion switches of a selected one of the plurality of capacitive sampling circuits are closed to couple the selected one to the first and second inputs of the comparator during a conversion phase.
摘要:
A circuit includes a comparator including a first input, a second input, and an output. The circuit further includes a plurality of capacitive sampling circuits configured to be selectively coupled to the first and second inputs. Each of the plurality of capacitive sampling circuits includes first and second capacitors, and includes first and second conversion switches configured to selectively couple the first and second capacitors to the first and second inputs, respectively. The first and second conversion switches of a selected one of the plurality of capacitive sampling circuits are closed to couple the selected one to the first and second inputs of the comparator during a conversion phase.
摘要:
An isolator that includes first and second substantially identical circuitry galvanically isolated from each other and each having at least one communications channel thereon for communicating signals across an isolation boundary therebetween and each of said first and second circuitry having configurable functionality associated with the operation thereof. A coupling device is provided for coupling signal across the isolation boundary between the at least one communication channels of the first and second circuitry. First and second configuration memories are provided, each associated with a respective one of the first and second circuitry. First and second configuration control devices are provided, each associated with a respective one of the first and second circuitry and each configuring the functionality of the associated one of the first and second circuitry. The first and second configurable memories have stored therein complementary configuration information to control each of the functionalities of the first and second circuitry to operate in a complementary manner for communication of signals across the isolation boundary.
摘要:
An integrated circuit having voltage isolation capabilities comprising a first galvanically isolated area of the integrated circuit containing a first group of functional circuitry for processing a data stream. The first group of functional circuitry located in a substrate of the integrated circuit. Capacitive isolation circuitry located in conductive layers of the integrated circuit provides a high voltage isolation link between the first group of functional circuitry and a second group of functional circuitry connected to the integrated circuit through the capacitive isolation circuitry. The capacitive isolation circuitry includes a differential transmitter for transmitting data in a differential signal to the second group of functional circuitry via the capacitive isolation circuitry. A differential receiver receives data within the differential signal from the second group of functional circuitry via the capacitive isolation circuitry. A detector circuit within the differential receiver detects the received data. The detector circuit monitors the differential signal and generates a first logical output when a voltage generated responsive to the differential signal exceeds a programmable voltage threshold level and generates a second logical output when the voltage generated responsive to the differential signal falls below the programmable voltage threshold level.
摘要:
A first phase-locked loop (PLL) circuit includes an input for receiving a timing reference signal from an oscillator, a controllable oscillator circuit supplying an oscillator output signal, and a multi-modulus feedback divider circuit. A second control loop circuit is selectably coupled through a select circuit to supply a digital control value (M) to the multi-modulus feedback divider circuit of the first loop circuit to thereby control the oscillator output signal. While the second control loop is coupled to supply the control value to the feedback divider circuit, the control value is determined according to a detected difference between the oscillator output signal and a reference signal coupled to the second control loop circuit at a divider circuit. While the second control loop circuit is not coupled to control the first PLL circuit, the first PLL circuit receives a digital control value to control a divide ratio of the feedback divider, the digital control value is determined at least in part according to a stored control value stored in nonvolatile storage, the stored control value corresponding to a desired frequency of the oscillator output signal.
摘要:
A first phase-locked loop (PLL) circuit includes an input for receiving a timing reference signal from an oscillator, a controllable oscillator circuit supplying an oscillator output signal, and a multi-modulus feedback divider circuit. A second control loop circuit is selectably coupled through a select circuit to supply a digital control value (M) to the multi-modulus feedback divider circuit of the first loop circuit to thereby control the oscillator output signal. While the second control loop is coupled to supply the control value to the feedback divider circuit, the control value is determined according to a detected difference between the oscillator output signal and a reference signal coupled to the second control loop circuit at a divider circuit. While the second control loop circuit is not coupled to control the first PLL circuit, the first PLL circuit receives a digital control value to control a divide ratio of the feedback divider, the digital control value is determined at least in part according to a stored control value stored in nonvolatile storage, the stored control value corresponding to a desired frequency of the oscillator output signal.