Abstract:
A charging system for an electric vehicle and an electric vehicle are provided. The charging system comprises: a power battery; a charge-discharge socket; a bidirectional DC/DC module having a first DC terminal connected with a first terminal of the power battery and a second DC terminal connected with a second terminal of the power battery; a bidirectional DC/AC module having a first DC terminal connected with the second terminal of the power battery and a second DC terminal connected with the first terminal of the power battery; a charge-discharge control module having a first terminal connected with the AC terminal of the bidirectional DC/AC module and a second terminal connected with the charge-discharge socket; and a controller module connected with the charge-discharge control module, and configured to control the charge-discharge control module according to a current operation mode of the charging system.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting three-phase currents of the synchronous motor; determining whether a relationship between the three-phase currents satisfies a preset requirement; and if no, determining that the synchronous motor is out of step. It is determined that the synchronous motor is out of step when amplitudes of each current of the three-phase currents are not equal or when the phase difference between the three-phase currents is not 120°.
Abstract:
A method for checking an out-of-step of a synchronous motor includes detecting electric degrees of the synchronous motor, in which the electric degrees comprise at least a first electric degree and a second electric degree detected at a preset interval, and the second electric degree is detected after the first electric degree; comparing the first electric degree with the second electric degree to obtain a comparing result; and determining that the synchronous motor is out of step when the comparing result satisfies a preset requirement. It is determined that the synchronous motor is out of step when the electric degree keeps unchanged or decreases progressively, or an increment of the electric degree is very small.
Abstract:
An electric vehicle and a power system and a motor controller for an electric vehicle are provided. The power system includes a power battery; a charging-discharging socket; a bidirectional DC/DC module connected with the power battery; a driving control switch connected with the power battery and the bidirectional DC/DC module; a bidirectional DC/AC module connected with the driving control switch and the power battery; a motor control switch connected with the bidirectional DC/AC module and a motor; a charging-discharging control module connected with the bidirectional DC/AC module and the charging-discharging socket; and a controller module connected with and configured to control the driving control switch, the motor control switch and the charging-discharging control module according to a current operation mode of the power system.
Abstract:
A charging system for an electric vehicle and an electric vehicle including the same are provided. The charging system includes: a power battery; a first charging interface and a second charging interface connected with an external power source respectively; a first charging control branch connected between the power battery and the first charging interface, and a second charging control branch connected between the power battery and the second charging interface; and a controller connected with the first charging interface and the second charging interface respectively.
Abstract:
An electric vehicle and a power system and a motor controller for an electric vehicle are provided. The power system includes a power battery; a charging-discharging socket; a bidirectional DC/DC module connected with the power battery; a driving control switch connected with the power battery and the bidirectional DC/DC module; a bidirectional DC/AC module connected with the driving control switch and the power battery; a motor control switch connected with the bidirectional DC/AC module and a motor; a charging-discharging control module connected with the bidirectional DC/AC module and the charging-discharging socket; and a controller module connected with and configured to control the driving control switch, the motor control switch and the charging-discharging control module according to a current operation mode of the power system.
Abstract:
A motor control system includes a main control unit, a power supply unit, and a driving unit. The main control unit obtains sampling data of a motor and a power supply signal from the driving unit, generates a motor control signal according to the sampling data, and outputs a safety enable signal when determining that motor drive is abnormal according to the sampling data or when determining that power supply to the driving unit is abnormal according to the power supply signal. The power supply unit supplies power to the main control unit, monitors a state of the main control unit, and outputs a safety cut-off signal when the power supply unit or the main control unit is abnormal. The driving unit drives the motor according to the motor control signal, and switches to a safe path when receiving any one of the safety enable or safety cut-off signal.
Abstract:
A motor control system includes a drive unit, a backup control unit, and a power unit. The drive unit is electrically connected to the power unit, and is configured to convert a received low-voltage drive signal into a high-voltage drive signal and output the high-voltage drive signal to the power unit. The power unit outputs, according to the high-voltage drive signal, a power supply drive signal provided by a high-voltage battery. The power supply drive signal is configured to drive a motor connected to the power unit to rotate. The backup control unit is electrically connected to the drive unit. The drive unit is configured to output a diagnosis signal indicating a running status of the drive unit to the backup control unit.
Abstract:
A power system for an electric vehicle, an electric vehicle and a motor controller for an electric vehicle are provided. The power system includes: a power battery (10); a charge-discharge socket (20); a three-level bidirectional DC-AC module (30); a motor control switch (40); a charge-discharge control module (50) having a first terminal connected with an AC terminal of the three-level bidirectional DC-AC module (30) and a second terminal connected with the charge-discharge socket (20); and a control module (60) connected with a third terminal of the charge-discharge control module (50) and a third terminal of the motor control switch (40), and configured to control the charge-discharge control module (50) and the motor control switch (40) according to a current working mode of the power system.
Abstract:
A method for controlling a rotation rate of an electric motor includes the s following steps: determining if an absolute value of a difference between an objective rotation rate of the electric motor and an actual rotation rate of the electric motor is greater than or equal to a predetermined value, and if yes, compensating a q axis current of the electric motor to adjust the rotation rate.