摘要:
An optoelectronic component comprises a first electrode (3), a radiation-emitting layer sequence (1) having an active region (10) on the first electrode (3), which region has a main extension plane (E) with a surface normal (N) and emits an electromagnetic primary radiation having a non-Lambertian emission characteristic, a second electrode (4) on the radiation-emitting layer sequence (1), said second electrode being transparent to the primary radiation, and a wavelength conversion layer (2) in the beam path of the primary radiation, which converts the primary radiation at least partly into an electromagnetic secondary radiation. In this case, the first electrode (3) is reflective to the primary radiation, the non-Lambertian emission characteristic is given by an intensity I(α) of the primary radiation of the radiation-emitting layer sequence (1) as a function of an emission angle α measured with respect to the surface normal (N), the intensity I(α) increases from a α≧0° with increasing angle α up to a maximum angle αmax, and the conversion probability of the electromagnetic primary radiation in the wavelength conversion layer (2) increases as the emission angle α increases.
摘要:
An optoelectronic component comprises a first electrode (3), a radiation-emitting layer sequence (1) having an active region (10) on the first electrode (3), which region has a main extension plane (E) with a surface normal (N) and emits an electromagnetic primary radiation having a non-Lambertian emission characteristic, a second electrode (4) on the radiation-emitting layer sequence (1), said second electrode being transparent to the primary radiation, and a wavelength conversion layer (2) in the beam path of the primary radiation, which converts the primary radiation at least partly into an electromagnetic secondary radiation. In this case, the first electrode (3) is reflective to the primary radiation, the non-Lambertian emission characteristic is given by an intensity I(α) of the primary radiation of the radiation-emitting layer sequence (1) as a function of an emission angle α measured with respect to the surface normal (N), the intensity I(α) increases from a α≧0° with increasing angle α up to a maximum angle αmax, and the conversion probability of the electromagnetic primary radiation in the wavelength conversion layer (2) increases as the emission angle α increases.
摘要:
A light-emitting diode arrangement has a frame-shaped piezo transformer having at least one output-side connection, and having a light-emitting diode module that generates electromagnetic radiation, which module is disposed within the frame-shaped piezo transformer and electrically connects to the output-side connection of the piezo transformer by at least one output-side electrical conductor, wherein radiation emitted by the light-emitting diode module in the direction of the piezo transformer is reflected, at the latter.
摘要:
An optoelectronic projection device which generates a predefined image during operation, including a semiconductor body having an active layer that generates electromagnetic radiation and a radiation exit side and is an imaging element of the projection device, wherein, to electrically contact the semiconductor body, a first contact layer and a second contact layer are arranged at a rear side of the semiconductor body, the rear side lying opposite the radiation exit side, and are electrically insulated from one another by a separating layer.
摘要:
An optoelectronic semiconductor chip includes a semiconductor layer stack having an active layer that generates radiation, and a radiation emission side, and a conversion layer disposed on the radiation emission side of the semiconductor layer stack, wherein the conversion layer converts at least a portion of the radiation, which is emitted by the active layer, into radiation of a different wavelength, the radiation emission side of the semiconductor layer stack has a first nanostructuring, and the conversion layer is disposed in this first nanostructuring.
摘要:
An illumination device (1, 1A, 1B) is disclosed. The illumination device (1, 1A, 1B) contains an organic light-emitting component (2, 2A, 2B, 2C, 2C′) containing a functional layer sequence (23, 23A) for generating light, a light passage area (7, 7A, 7B), which is provided for coupling out light emitted by the organic light-emitting component (2, 2A, 2B, 2C, 2C′) from the illumination device (1, 1A, 1B) and for coupling ambient light into the illumination device (1, 1A, 1B) a retroreflector (5, 5A, 5B), which is provided for reflecting at least part of the ambient light coupled in through the light passage area (7, 7A, 7B) back to the light passage area (7, 7A, 7B). The organic light-emitting component (2, 2A, 2B, 2C, 2C′) is embodied such that it is at least partly light-transmissive. The functional layer sequence (23, 23A) of the organic light-emitting component (2, 2A, 2B, 2C, 2C′) is arranged between the light passage area (7, 7A, 7B) and the retroreflector (5, 5A, 5B). A luminaire (10) and a display device (100) are also disclosed.
摘要:
An optoelectronic comprises a substrate (1), a first electrode (2) on the substrate (1), a radiation-emitting layer sequence (3) having an active region (30) that emits an electromagnetic primary radiation during operation, a second electrode, which is transparent to the primary radiation, on the radiation-emitting layer sequence (3), and an encapsulation arrangement (10) deposited on the second electrode (4). The encapsulation arrangement (10) has a layer stack having at least one first barrier layer (6) and at least one first wavelength conversion layer (5) that converts the primary radiation at least partly into electromagnetic secondary radiation. The encapsulation arrangement (10) is at least partly transparent to the primary radiation and/or to the secondary radiation.
摘要:
An optoelectronic semiconductor chip includes a carrier including a carrier element having a mounting side; one electrically conductive n-type wiring layer arranged at the mounting side; a structured, electrically conductive contact layer having a p-side and n-side contact region and arranged at a side of the n-type wiring layer facing away from the carrier element; at least one insulation region electrically insulating the p-side contact region from the n-side contact region; at least one electrically insulating spacer layer arranged at a side of the n-type wiring layer facing away from the carrier element in a vertical direction between the p-side contact region and the n-type wiring layer, wherein the n-side contact region and the n-type wiring layer electrically conductively connect to one another, and the p-side contact region and the spacer layer border the n-side contact region in a lateral direction; an optoelectronic structure connected to the carrier.
摘要:
A radiation-emitting semiconductor chip includes a carrier and a semiconductor body having a semiconductor layer sequence, wherein an emission region and a protective diode region are formed in the semiconductor body having the semiconductor layer sequence; the semiconductor layer sequence includes an active region that generates radiation, the active region being arranged between a first semiconductor layer and a second semiconductor layer; the first semiconductor layer is arranged on a side of the active region which faces away from the carrier; the emission region has a recess extending through the active region; the first semiconductor layer in the emission region is electrically conductively connected to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer toward the carrier; and the first connection layer in the protective diode region is electrically conductively connected to the second semiconductor layer.
摘要:
A lighting device with front carrier, rear carrier and plurality of light-emitting diode chips, which when in operation emits light and releases waste heat, wherein rear carrier is covered at least in selected locations by front carrier, light-emitting diode chips are arranged between rear carrier and front carrier to form array, light-emitting diodes are contacted electrically by rear and/or front carrier and immobilized mechanically by rear carrier and front carrier, front carrier is coupled thermally conductively to light-emitting diode chips and includes light outcoupling face remote from light-emitting diode chips, which light outcoupling face releases some of waste heat released by light-emitting diode chips into surrounding environment, each light-emitting diode chip is actuated with electrical nominal power of 100 mW or less when lighting device is in operation and has light yield of 100 lm/W or more.