Abstract:
Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
Abstract:
Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
Abstract:
A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.
Abstract:
A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.
Abstract:
A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.
Abstract:
Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
Abstract:
Individual biological micro-objects can be deterministically selected and moved into holding pens in a micro-fluidic device. A flow of a first liquid medium can be provided to the pens. Physical pens can be structured to impede a direct flow of the first medium into a second medium in the pens while allowing diffusive mixing of the first medium and the second medium. Virtual pens can allow a common flow of medium to multiple ones of the pens.
Abstract:
A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.
Abstract:
A group of micro-objects in a holding pen in a micro-fluidic device can be selected and moved to a staging area, from which the micro-objects can be exported from the micro-fluidic device. The micro-fluidic device can have a plurality of holding pens, and each holding pen can isolate micro-objects located in the holding pen from micro-objects located in the other holding pens or elsewhere in the micro-fluidic device. The selected group of micro-objects can comprise one or more biological cells, such as a clonal population of cells. Embodiments of the invention can thus select a particular group of clonal cells in a micro-fluidic device, move the clonal cells to a staging area, and export the clonal cells from the micro-fluidic device while maintaining the clonal nature of the exported group.
Abstract:
Single-sided optoelectrowetting (SSOEW)-configured substrates are provided, as well as microfluidic devices that include such substrates. The substrates can include a planar electrode, a photoconductive (or photosensitive) layer, a dielectric layer (single-layer or composite), a mesh electrode, and a hydrophobic coating. Fluid droplets can be moved across the hydrophobic coating of such substrates in a light-actuated manner, upon the application of a suitable AC voltage potential across the substrate and the focusing of light into the photoconductive layer of the substrate in a location proximal to the droplets. Walls can be disposed upon the substrates to form the microfluidic devices. Together the walls and substrate can form a microfluidic circuit, through which droplets can be moved.